North Eastern Regional Institute of Science and Technology (Deemed University) Nirjuli, Itanagar-791109, Arunachal Pradesh

Department of Electronics and Communication Engineering

Ph. D. Syllabus

Ph. D.in Electronics and Communication Engineering (PT/FT)

Course Code	Names of Subjects	L	Т	Р	C C
EC 9049	ENGINEERING RESEARCH METHODOLOGY	4	0	0	4
EC 90X2	X 3 COURSES	3	0	0	3
		1	T	DTA	L 13
No.	Names of Subjects	L	Т	Р	С
EC 9001	TELECOMMUNICATION SWITCHING AND NETWORKS	3	0	0	3
EC 9002	MOBILE COMMUNICATION	3	0	0	3
EC 9003	RF INTEGRATED CIRCUITS	3	0	0	3
EC 9004	MICROWAVE DEVICES AND CIRCUITS	3	0	0	3
EC 9005	INFORMATION THEORY AND CODING TECHNIQUES	3	0	0	3
EC 9006	COMPUTER COMMUNICATION NETWORKS	3	0	0	3
EC 9007	OPTICAL COMMUNICATION	3	0	0	3
EC 9008	SATELLITE COMMUNICATION SYSTEM	3	0	0	3
EC 9009	RF COMPONENT AND CIRCUIT DESIGN	3	0	0	3
EC 9010	RADAR SIGNAL PROCESSING	3	0	0	3
EC 9011	ANTENNAS AND PROPAGATION FOR WIRELESS	3	0	0	3
	COMMUNICATION				
EC 9012	ADVANCED NETWORKS TECHNOLOGIES	3	0	0	3
EC 9013	ERROR CONTROL TECHNIQUE	3	0	0	3
EC 9014	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	3	0	0	3
EC 9015	CHANNEL MODELLING FOR WIRELESS COMMUNICATION	3	0	0	3
EC 9016	HIGH SPEED COMMUNICATION TECHNIQUES	3	0	0	3
EC 9017	SIGNAL PROCESSING FOR COMMUNICATION	3	0	0	3
EC 9018	ADVANCED DIGITAL SIGNAL PROCESSING	3	0	0	3
EC 9019	VLSI TECHNOLOGY	3	0	0	3
EC 9020	CMOS ANALOG IC DESIGN	3	0	0	3
EC 9021	LOW POWER VLSI DESIGN	3	0	0	3
EC 9022	DIGITAL IC DESIGN	3	0	0	3
EC 9023	CAD FOR VLSI	3	0	0	3
EC 9024	DIGITAL AUDIO AND VIDEO COMMUNICATION	3	0	0	3
EC 9025	DESIGN OF SEMICONDUCTOR MEMORIES	3	0	0	3
EC 9026	MEMS AND MICROSYSTEMS TECHNOLOGY	3	0	0	3
EC 9027	ADVANCED COMPUTER ARCHITECTURE	3	0	0	3
EC 9028	ANALOG FILTER DESIGN	3	0	0	3
EC 9029	VLSI SIGNAL PROCESSING	3	0	0	3
EC 9030	VLSI DATA CONVERSION CIRCUIT	3	0	0	3
EC 9031	TESTING AND VERIFICATION OF VLSI CIRCUITS	3	0	0	3
EC 9032	DIGITAL SYSTEM DESIGN USING FPGA	3	0	0	3
EC 9033	PHOTONICS INTEGRATED CIRCUITS	3	0	0	3
EC 9034	NANOELECTRONICS	3	0	0	3
EC 9035	NEURAL NETWORKS, ARCHITECTURE AND ITS APPLICATIONS	3	0	0	3
EC 9036	ADAPTIVE SIGNAL PROCESSING	3	0	0	3
EC 9037	SOFT COMPUTING	3	0	0	3

EC 9038	STATISTICAL SIGNAL PROCESSING AND MODELLING	3	0	0	3
EC 9039	DIGITAL IMAGE PROCESSING	3	0	0	3
EC 9040	SPEECH PROCESSING	3	0	0	3
EC 9041	MODERN CONTROL ENGG	3	0	0	3
EC 9042	BIOMEDICAL SIGNAL PROCESSING	3	0	0	3
EC 9043	EMBEDDED SYSTEM DESIGN	3	0	0	3
EC 9044	BIO-SENSORS AND BIO MEMS	3	0	0	3
EC 9045	MODERN DIGITAL COMMUNICATION TECHNIQUES	3	0	0	3
EC 9046	SEMICONDUCTOR DEVICE MODELLING	3	0	0	3
EC 9047	WIRELESS COMMUNICATION	3	0	0	3
EC 9048	CMOS MIXED SIGNAL CIRCUITS	3	0	0	3
EC 9049	ENGINEERING RESEARCH METHODOLOGY	4	0	0	4

EC 9001	TELECOMMUNICATION SWITCHING AND NETWORKS	3-0-0	3
Unit I	Multiplexing: Transmission Systems, FDM Multiplexing and modulation, Time Division Multiplexing, Digital Transmission and Multiplexing: Pulse	6	Hrs
	Transmission, Line Coding, Binary N – Zero Substitution, Digital Biphase, Differential Encoding, Time Division Multiplexing, Time Division Multiplex		
	Loops and Rings		
Unit II	SONET/SDH: SONET Multiplexing Overview, SONET Frame Formats SONET Operations, Administration and Maintenance, Payload Framing and Frequency Justification, Virtual Tributaries, DS3 Payload Mapping, E4 Payload Mapping, SONET Optical Standards, SONET Networks, SONET Pings: Unidirectional	8	Hrs
	Path Switching Ping, Bidirectional Line Switched Ping		
Unit III	Digital Switching Switching Functions Space Division Switching Time	10	Hrs
	Division Switching, two-dimensional switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Gross-Connect Systems, and Digital Switching in	10	ms
	an Analog Environment. Elements of SSNO7 Signaling		
Unit IV	Network Synchronization Control and Management Timing: Timing Recovery: Phase-Locked Loop Clock Instability Litter Measurements Systematic Litter	8	Hrs
	Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network		
	Synchronization, U.S. Network Synchronization, Network Control, Network		
	Management		
Unit V	Digital Subscriber Access and traffic analysis, ISDN: ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol, High-Data-Rate	10	Hrs
	Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL. Digital		
	Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated		
	Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the		
	Loop, Hybrid Fiber Coax Systems, and Voice band Modems: PCM Modems,		
	Local microwave Distribution Service, Digital Satellite Services. Traffic		
	Systems And Network Blocking Probabilities: End to End Blocking		
	Probabilities Overflow Traffic And Delay Systems: Exponential Service Times		
	Constant Service Times, Finite Queues.		
Text/References:			
	1. Bellamy John, "Digital Telephony", John Wily & Sons, Inc. 3rd ed. 200	0	
	2. Viswanathan. T., "Telecommunication Switching System and Network 1994	s", PHI	
	3. Robert G. Winch, "Telecommunication transmission systems", 2nd ec 2004	l. TMH	
	4. Marion Cole, "Intro. to Telecommunications" 2nd ed. Pearson education	n 2008.	
	5. Tom Sheldon, "Encyclopedia of Networking and telecom." TMH reprint 2006	seventh	

EC 9002 MOBILE COMMUNICATION

Unit IIntroduction to Cellular Mobile Systems: A basic cellular system, performance10criteria, uniqueness of mobile radio environment, operation of cellular systems,
planning a cellular system, overview of generations of cellular systems. Elements
of Cellular Radio Systems Design and interference: General description of the
problem, concept of frequency reuse channels, co-channel interference reduction
factor, desired C/I from a normal case in an omni directional antenna system, cell10

3-0-0 3

Hrs

splitting, consideration of the components of cellular systems. Introduction to co-channel interference, co-channel measurement design of antenna system, antenna parameter and their effects

- Unit II Cell Coverage for Signal & antenna structures: General introduction, obtaining 10 Hrs the mobile point to point mode, propagation over water or flat open area, foliage loss, propagation near in distance, long distance propagation, point to point prediction model- characteristics, cell site, antenna heights and signal coverage cells, mobile to mobile propagation. Characteristics of basic antenna structures, antenna at cell site, mobile antennas. Frequency Management & Channel Assignment, Hand Off & Dropped Calls: Frequency management, fixed channel assignment, non-fixed channel assignment, traffic & channel assignment. Why hand off, types of handoff and their characteristics, dropped call rates & their evaluation.
- Unit IIIModulation methods and coding for error detection and correction: Introduction12Hrsto Digital modulation techniques, modulation methods in cellular wireless
systems, OFDM. Block coding, convolution coding and Turbo coding. Multiple
access techniques: FDMA, TDMA, CDMA; Time-division multiple access
(TDMA), code division multiple access (CDMA), CDMA capacity, probability
of bit error considerations, CDMA compared with TDMA12
- **Unit IV** Second generation, digital, wireless systems, GSM, IS_136 (D-AMPS), IS-95, 10 Hrs mobile management, voice signal processing and coding.

Text/References:

- 1. Mobile Cellular Telecommunications; 2nd ed.; William, C Y Lee McGraw Hill
- 2. Mobile wireless communications; Mischa Schwartz, Cambridge University press, UK, 2005
- 3. Mobile Communication Hand Book; 2nd Ed.; IEEE Press
- 4. Wireless communication principles and practice, 2nd Ed, Theodore S rappaport, Pearson Education.
- 5. 3G wireless Demystified; Lawrence Harte, Mc. Graw Hill pub.

EC 9003	RF INTEGRATED CIRCUITS	3-0-0	3
Unit I	RF Filter design: Basic resonator and filter configurations-special filter	10	Hrs
	realization-filter implementation-coupled filter		
Unit II	Active RF Components: RF diodes-bipolar junction transistor -RF field effect	8	Hrs
	transistor-high electron mobility transistors-diode models-transistor models-		
	measurement of active devices-scattering parameter device characterization.		
Unit III	Matching and biasing networks: Impedance matching using discrete components-	14	Hrs
	micro strip line matching networks-amplifier classes of operation and biasing		
	networks		
Unit IV	RF Transistor amplifier design: Characteristics of amplifier-amplifier power	10	Hrs
	relations-stability consideration-constant gain-broadband, high power, and		
	multistage amplifiers, Oscillators and mixers: Basic oscillator model-high		
	frequency oscillator configuration-basic characteristics of mixer		
Text/References:			
	1. Reinhold Ludwig, "RF circuit design, theory and applications" Pavel B	retchko,	
	"Pearson Asia Education", edition 2001		
	2. D.Pozar, "Microwave Engineering", John Wiley & Sons, New York, 1998	~	

3. Bahil and P. Bhartia, "Microwave Solid State Circuit Design, John Willey & Sons, New York,

EC 9004	MICROWAVE DEVICES AND CIRCUITS	3-0-0	3
Unit I	Microwave frequencies, Interactions between electrons and fields,	10	Hrs
	Electromagnetic plane waves, Electric and magnetic wave equations, Poynting		
	theorem, Uniform plane waves and reflection, Plane wave propagation in free		
	space and lossless dielectric, Plane wave propagation in lossy media, Plane wave		
	propagation in metallic film coating on plastic substrate		
Unit II	Transmission line equations and solutions, Reflection coefficient and	10	Hrs
	transmission coefficient, Standing wave and standing wave ratio, Line impedance		
	and admittance, Smith chart, Microwave waveguides and components,		
	Rectangular waveguides, Microwave cavities, Directional couplers, Circulators		
	and isolators, Microwave transistors and tunnel diodes, Microwave bipolar		
	transistors, Heterojunction transistors, Microwave tunnel diodes, Microwave		
	field effect transistors, Junction field effect transistors, Metal semiconductor field		
	effect transistors		
Unit III	Transferred electron devices, Gunn - effect diodes - GaAs diode, Ridley-	12	Hrs
	watkins-Hilsum (RWH) theory, Modes of operation, LSA diodes, InP diodes,		
	Avalanche transit time devices, Read diode, IMPATT diode, TRAPATT diodes,		
	BARITT diodes, Microwave linear beam tubes (O Type), Conventional vacuum		
	triodes, , Tetrodes and pentodes, klystrons, Multicavity klystron amplifiers,		
	Reflex klystrons, Helix traveling wave tubes (TWT), Coupled cavity traveling		
	wave tubes, Microwave crossed filed tubes (M Type), Magnetron oscillators,		
	Forward wave crossed field amplifier (FWCFA OR CFA)		
Unit IV	Strip lines, Microstrip lines, Parallel strip lines, Coplanar strip lines, Shielded	10	Hrs
	strip lines, Monolithic microwave integrated circuits, Materials, Monolithic		
	microwave integrated circuit growth, MOSFET fabrication.		
Text/References:			
	1. Samuel Y.Liao, "Microwave Devices and Circuits" Third edition,PHI		
	2. SK Roy, M Mitra, "Microwave semiconductor devices", PHI 2003		

3. David M. Pozar, "Microwave Engineering" Wiley

EC 9005	INFORMATION THEORY AND CODING TECHNIQUES	3-0-0	3
Unit I	Definitions, Uniquely Decodable Codes, Instantaneous Codes, Krafts Inequality,	10	Hrs
	McMillan's Inequality, Optimal Codes, Binary Huffman Codes, r-ary Huffman		
	codes, Information and Entropy, Properties of Entropy Function, Entropy and		
	Average Word-Length, Shannon-Fano Coding, Shannon's First Theorem,		
	Information Channels, Binary Symmetric Channel, System Entropies, System		
	Entropies for Binary Symmetric Channel, Extension of Shannon's First Theorem		
	to Information Channels, Mutual Information, Mutual Information for the Binary		
	Symmetric Channel, Hamming Distance, Shannon's Second (Fundamental)		
	Theorem, Converse of Shannon's Theorems.		
Unit II	Review: Algebra, Krawtchouk Polynomials, Combinatorial Theory, Probability	10	Hrs
	Theory. Linear Codes: Block Codes, Linear Codes, Hamming Codes, Majority		
	Logic Coding, Weight Enumerators, The Lee Metric, Hadamard Codes, Golay		
	Codes (Binary and Ternary), Reed Muller Codes, And Kerdock Codes.Bounds on		
	Codes: Gilbert Bound, Upper Bound, Linear Programming Bounds, Hamming's		
	Sphere –Packing Bound, Gilbert Varsnamov Bound, Hadamard Matrices and		
Unit III	Cudes Cualia Cadas: Conceptor Matrix, Chack polynomial Zaros of Cualia Cadas, BCH	10	Ura
Unit III	Codes Read Solomon Codes Quadratic Residue Codes Generalized Read	12	1115
	Muller Codes, Perfect Codes and Uniformly Packed Codes: Lloyd's Theorem		
	Characteristic Polynomial of a Code Uniformly Packed Codes. Nonexistence		
	Theorems		
Unit IV	Quaternary Codes Binary Codes Derived from codes over 74 Galois Rings over	10	Hrs
Unit I V	Z4. Cyclic Codes over Z4. Goppa Codes. Algebraic Curves. Divisors.	10	1115
	Differentials on a Curve, Riemann – Roch Theorem, Codes from Algebraic		
	Curves. Arithmetic Codes: AN Codes, Mandelbaum – Barrows Codes,		
	Convolutional Codes		
Text/References:			
	1. G. A. Jones and J. M. Jones, "Information and Coding Theory", Sp	oringer,	
	2000.		
	2. J. H. van Lint, "Introduction to Coding Theory", Springer, 1999.		
	3. Cover Thomas, "Elements of Information Theory", and Wiley 2006.		
	4. R. W. Hamming, "Coding and Information Theory", Prentice Hall, 1986).	
	5. T. M. Cover and J. A. Thomas, "Elements of Information Theory",	Wiley.	
	1991.		

6. R. E. Blahut, "Principles and Practice of Information Theory," AWL, 1987.

EC 9006	COMPUTER COMMUNICATION NETWORKS	3-0-0	3
Unit I	Concept of CCN/DCN, characteristics of data – Users' sub-network, topological	10	Hrs
	design etc. Accessing techniques, Data Modeling – M/M/1 analysis, Circuit		
	switching, message switching,		
Unit II	Packet switching, and ATM cell switching, Protocols, ISO, OSI, Networking	8	Hrs
	objectives, classification of networks – LAN, MAN, WAN, ISDN		
Unit III	Techniques and theories of CSMA/CD Bus, Token Ring, Token passing bus-	14	Hrs
	throughput analysis, Modeling (Stalling Models, IEEE Model etc.)		
Unit IV	Introduction to wireless networks, GSM, TDMA & CDMA-design and analysis,	10	Hrs
	PCS concepts, Network operation and maintenance, Network Delay analysis,		
	Routing, Flow Control, Congestion Control		
Text/References:			
	1. Behrouz A. Forouzan, "TCP/IP Protocol Suit", TMH, 2000		
	2. Wayne Tomasi, "Introduction to Data communications and Networking", Pear	rson Ed.	
	2007		
	3. Tananbaum A. S., "Computer Networks", 3rd Ed., PHI, 1999		
	4. Black U, "Computer Networks-Protocols, Standards and Interfaces", PHI, 199	6	
	5. Stallings W., "Data and Computer Communications", 6th Ed., PHI, 2002.		
	6. Stallings W., "SNMP, SNMPv2, SNMPv3, RMON 1 & 2", 3rd Ed., Addison 1999	Wesley,	

7. Laurra Chappell (Ed), "Introduction to Cisco Router Configuration", Techmedia

EC 9007	OPTICAL COMMUNICATION	3-0-0	3
Unit I	Introduction: concepts of information, general communication systems, evolution	8	Hrs
	of optical fiber communication systems, advantages, disadvantage of optical		
	fiber, communication systems. Wave propagation in dielectric waveguide: snell's		
	law, internal reflection, dielectric slab wave guide, numerical aperture,		
	propagation of model & rays. Step-index fibers, graded index fibers.		
Unit II	Attenuation in optics fibers: Fiber attenuation, connectors &splices, bending	10	Hrs
	loses, Absorption, scattering, very low loss materials, plastic & polymer-clad-		
	silica fibers. Wave propagation in fibers: wave propagation in step index &		
	graded index fiber, fiber dispersion, single mode fibers, multimode fibers,		
	dispersion shifted fiber, dispersion flattened fiber, polarization		
Unit III	Optical sources & detectors: principles of light emitting diodes (LED's), design	14	Hrs
	of LED's for optical fiber communications, semiconductor LASER for optical		
	fiber communication system ,principles of semiconductor photodiode detectors,		
	PIN photodiode, Avalanche photodiode detectors. Optical fiber communication		
	system: telecommunication, local distribution series, computer networks local		
	data transmission & telemetry, digital optical fiber communication system, first		
	& second generation system, future system.		
Unit IV	Advanced multiplexing strategies: Optical TDM, subscriber multiplexing (SCM),	10	Hrs
	WDM. Optical networking: data communication networks, network topologies,		
	MAC protocols, Network Architecture- SONET/TDH, optical transport network,		
	optical access network, optical premise network.		
Text/References:			
	1. Senior J., optical fiber communications, principles & practice, PHI.		
	2. Keiser G., optical fiber communications, McGraw-hill.		
	3. Gowar J., optical communication systems, PHI.		
	4. William B. Jones jr., Introduction to optical fiber communication system	s, Holt,	

Rinehart and Winston, Inc

EC 9008	SATELLITE COMMUNICATION SYSTEM	3-0-0	3
Unit I	Introduction: Origin and brief history of satellite communications, an overview of satellite system engineering, satellite frequency bands for communication. Orbital theory:Orbital mechanics, locating the satellite in the orbit w.r.t. earth	10	Hrs
	look angle determination. Azimuth & elevation calculations.	4.0	
Unit II	Spacecraft systems: Attitude and orbit control system, telemetry, tracking and command (TT&C), communications subsystems, transponders, spacecraft antennas. Satellite link design: Basic transmission theory, noise figure and noise temperature, C/N ratio, satellite down link design, satellite uplink design	10	Hrs
Unit III	Modulation, Multiplexing, Multiple access Techniques: Analog telephone transmission, Fm theory, FM Detector theory, analog TV transmission, S/N ratio Calculation for satellite TV linking, Digital transmission, base band and band pass transmission of digital data, BPSK, QPSK, FDM, TDM, Access techniques: FDMA, TDMA, CDMA	14	Hrs
Unit IV	Encoding & FEC for Digital satellite links: Channel capacity, error detection coding, linear block, binary cyclic codes, and convolution codes. Satellite Systems: Satellite Earth station Technology, satellite mobile communication, VSAT technology, Direct Broadcast by satellite (DBS)	8	Hrs
Text/References:			
	 Timothy Pratt, Charles W. Bostian, "Satellite communication", John &sons, Publication, 2003 	Wiley	
	2 LJ. Spilker, "Digital Communication by satellite, PHI Publication, 1997		

J.J. Spilker, "Digital Communication by satellite, PHI Publication, 1997
 J. Martin, "Communication satellite systems", PHI publication, 2001

EC 9009	RF COMPONENT AND CIRCUIT DESIGN	3-0-0	3
Unit I	Transmission lines ,Broadband Mactching, Scattering Parameters, microwave transistors	10	Hrs
Unit II	Passive Components: Inductors, Inductor Model, Analytical model, Printed Inductors, Inductors on Si substrate and GaAs substrate. Thick film inductors, Thin film inductors, LTCC inductors. Wire Inductors. Capacitors, Monolithic capacitors, interdigital capacitors. Resistors, chip resistor ,MCM resistor, Monolithic resistors, Microwave Resonators and Narrowband Filters, Broadband Filters Microwave Amplifier Design: Two-Port Power Gains, Amplifier Stability Low Noise Amplifier Design,Broadband Amplifier Design	8	Hrs
Unit III	Microwave Amplifier Design: Two-Port Power Gains, Amplifier Stability Low Noise Amplifier Design, Broadband Amplifier Design	14	Hrs
Unit IV	Microwave Oscillators: One Port negative resistance oscillators, Two Port negative resistance oscillators, Oscillator configurations	10	Hrs
Text/References:			
	1. Lumped Elements for RF and Microwave Circuits " I. J. Bahl , Artech House		
	2. Microwave Transistor Amplifier: Analysis and Design, Gonzalez G. Prenti 1984.	ce Hall	
	 Microwave Semiconductor Circuit Design, Davis W. Alan, Van NostrandRe 1984. 	einhold,	
	4. Microwave Circuit Analysis and Amplifier Design, Samuel Y. Liao, Prenti 1987.	ce Hall	
	5. High Frequency Amplifier, Ralph S. Carson, Wiley Interscience, 1982		

EC 9010	RADAR SIGNAL PROCESSING	3-0-0	3
Unit I	Introduction: Classification of Radars based on functions, principles of operation	10	Hrs
	etc., performance measures and interplay between Radar parameters, Target		
	parameters and Environment parameters. Classical Detection and Estimation		
	Theory, Binary Hypotheses Testing, Likelyhood Ratio Test, Neymon		
	square, MAP, Maximum Likelihood Estimation of parameters, Cramer-Rao		
	Bounds, Chemoof Bounds		
Unit II	Representation of Signals, K-L expansion, Equivalent Low-pass representation of	10	Hrs
	Band pass signals and noise. Detection of Slowly Fluctuating point Targets in		
	white noise and coloured noise. Swerling Target models. Optimum receivers.		
	Correlator and Band pass M atohed Filter Receivers. PD - PF		
	performance;Coherent and non-coherent Integration sub-optimum Reception.		
	Radar Power – Aperture product.		
Unit III	Range and Doppler Resolution: Ambiguity function and its properties. Local and	14	Hrs
	Global Accuracy. Signal Design. LFM. Polyphase coded signals Detection of a		
	Doppler shifted slowly fluctuating point target return in a discrete scatterer		
	environment. Dobly dispersive Fading Target and Clutter models-Scattering		
	function description. Land clutter-pulse length limited and Beam width limited		
	clutter. Sea clutter.		
Unit IV	Optimum / Sub optimum reception of Range Spread / Doppler Spread / Doubly	8	Hrs
	spread targets in the presence of noise and clutter. Introduction to Adaptive		
	Detection and CFAR Techniques.		
Text/References:			
	1. Di Franco. JV and Rubin, WL., "Radar Detection", Artech House, 1980.	_	
	2. Gaspare Galati (Ed), "Advanced Radar Techniques and Systems"	, Peter	
	Perigrinus Ltd., 1993.		
	3. Ramon Nitzberg, "Radar Signal Processing and Adaptive Systems",	Artech	
	House, 1999.		
	4. W Rihaczek, "Principles of High Resolution Radar", Artech House, 1996	5.	

EC 9011	ANTENNAS AND PROPAGATION FOR WIRELESS COMMUNICATION	3-0-0	3
Unit I	Radiation fields of wire antennas: Concept of vector potential. Modification for time varying retarded case. Fields associated with Hertzian dipole. Radiation resistance of elementary dipole with linear current distribution. Radiation from half-wave dipole and quarter – wave monopole. Use of capacity hat and loading coil for short antennas	6	Hrs
Unit II	Antenna Fundamentals and Antenna Arrays: Definitions: Radiation intensity, Directives gain, Directivity, Power gain, Beam Width, Band Width, Gain and radiation resistance of current element. Half-wave dipole and folded dipole. Reciprocity principle, Effective length and Effective area. Relation between gain effective length and radiation resistance.	12	Hrs
Unit III	Loop Antennas: Radiation from small loop and its radiation resistance. Antenna Arrays: Expression for electric field from two and three element arrays. Uniform linear array. Method of pattern multiplication. Binomial array. Use of method of images for antennas above ground	8	Hrs
Unit IV	Traveling wave (wideband) antennas: Radiation from a traveling wave on a wire. Analysis and design of Rhombic antenna. Coupled Antennas: Self and mutual impedance of antennas. Two and Three element Yagi antennas, Log periodic antenna. Aperture and Lens Antennas: Radiation from an elemental area of a plane wave (Huygen's Source). Radiation from the open end of a coaxial line. Radiation from a rectangular aperture treated as an array of Huygen's sources. Relation between dipole and slot impedances. Method of feeding slot antennas. Thin slot in an infinite cylinder. Field on the axis of an e-plane sectoral horn. Radiation form circular aperture. Beam width and effective area. Reflector type of antennas (dish antennas). Dielectric lens and metal plane lens antennas. Lumeberg lens. Spherical waves and biconical Antenna	8	Hrs
Unit V	Propagation: Ground wave, space wave and sky wave propagation. Sky wave propagation: Structure of the ionosphere. Effective dielectric constant of ionized region. Mechanism of refraction. Refractive index. Critical frequency. Skip distance. Effect of earth's magnetic field. Energy loss in the ionosphere due to collisions. Maximum usable frequency. Fading and Diversity reception. Space wave propagation: Reflection from ground for vertically and horizontally polarized waves. Ground wave propagation: Attenuation characteristics for ground wave propagation. Calculation of field strength at a distance.	8	Hrs
1 ext/Kelerences:	 E.C. Jordan and Balmain, "Electro Magnetic Waves and Radiating Sy 1968, Reprint 2003 	ystems",	PHI,

- 2. John D. Kraus and Ronalatory Markefka, "Antennas", Tata McGraw-Hill Book Company, 2002
- 3. R.E. Collins, "antennas and Radio Propagation", McGraw-Hill, 1987
- 4. Ballany, "Antenna Theory", John Wiley & Sons, Second Edition, 2003

EC 9012	ADVANCED NETWORKS TECHNOLOGIES	3-0-0	3
Unit I	Internetworking model, application & upper layers, physical & data link layers network layer & path determination, router basics: Types, configuration &	8	Hrs
	operation		
Unit II	TCP/IP, IP Addressing, IP routing configuration, Multi protocol routing, IP	10	Hrs
	Subnets, IP routing protocols: OSPF, RIP, BGP, IP forwarding, classless inter		
	domain routing, traffic management with access lists.		
Unit III	Transport protocols: TCP, basic behavior, versions of TCP, UDP, and link layer	14	Hrs
	technologies: ARP, RARP, Ethernet, HDLC, and LAP-B. Modems, CSU/DSU,		
	B.35 and G.7.3 interfaces, ISDN, Fire walling, IPSEC basics, L2TP, New		
	services over internet		
Unit IV	Introduction to WAN connection, configuration of X.25, configuration of	10	Hrs
	frame-relay, new services over the Internet: VOIP, Fax over IP, VOATM,		
	VOFR, RTP/RTCP, SIP, H.323. Virtual private network, IP-multicast,		
	OOS architectures in the Internet, IntServ, DiffServ, Core Stateless fare		
	Oueing., Internet access technologies- security, directory enabled		
	networking, network caching technologies		
Text/References·	networking, network eaching technologies		
	1 W.R. Stevens, "TCP/IP Illustrated- Volume 1- The Protocols Pearson	Edition	
	Asis Education	Lunion	
	A315 Luuvauvii,		

- 2. Duglas Comer, "Internetworking withTCP/IP Volume 1 Principles, protocols and architecture, Prentice Hall, 4th Edition 2000
- 3. Internetworking Technologies handbook, 2nd edition, 1999, Cisco Press
- 4. Introduction to CISCO router configuration; 1998, Cisco Press

EC 9013 Unit I	ERROR CONTROL TECHNIQUE Basic Digital Communication, Signal Detection, Memoryless Channels, Hamming Codes, Overview of Information Theory (Random variables, Entropy, Conditional Entropy, Relative Entropy, Mutual Entropy, Channel Capacity, Channel Coding Theorem (without proof) and its implication). Groups (Definition and properties, Subgroups, Cyclic groups and order, Cosets, Lagrange's theorem, Isomorphism, Homomorphism), Linear Algebra (Vector Spaces, Independence, Basis, dimension, inner product, dual space, orthogonality), Rings (Definition, Polynomials, Quotient Rings, Ideals); Number Theory and Algebra (Divisibility, Euclidean Algorithm, Sugiyama Algorithm, Congruences, f function, Chinese Remainder Theorem, Fields over R and C, Galois Fields, Galois Field Arithmetic, Irreducible and Primitive Polynomials, Krawtchouk Polynomials)	3-0-0 8	3 Hrs
Unit II	Linear Block Codes (Generator Matrix, Parity Check Matrix, Dual Codes, Weight Distribution, Hamming Codes and their Dual, Erasure Decoding); Cyclic Codes (Cyclic Encoding, Syndrome Decoding, Binary CRC Codes); BCH, Reed Solomon Codes, Goppa Codes, Peterson's Algorithm, Belekamp – Massey Algorithm Forney's Algorithm	10	Hrs
Unit III	Welch – Berlekamp Key Equation, Guruswami –Sudan Decoding Algorithm and Soft RS decoding, Hadamard Matrices and Codes, Reed Muller Codes, Quadratic Residue Codes, Golay Codes; Gilbert – Varshamov Bound, Plotkin Bound, Griesmer Bound, Linear Programming and Related Bounds, McEliece – Rodemich – Rumsey – Welch Bound; Bursty Channels, Interleavers and Concatenation; Soft Decision Decoding Algorithms:	14	Hrs
Unit IV	Convolutional Codes, Viterbi Algorithm, Error Analysis, Puncturing, Suboptimal decoding algorithm for Convolutional codes, convolutional codes as block codes, Trellis representation of Block and Cyclic Codes, Trellis Coded Modulation. Turbo Codes – Encoding parallel concatenated codes, decoding algorithms, Error Floor and Weight Distribution. Low Density Parity Check Codes – Construction, Tanner graphs, Decoding. Space Time Coding – Fading Channels, Rayleigh Fading, MIMO Channel, Space Time Block Codes, Space – Time Trellis Codes.	10	Hrs
Text References.	 T. K. Moon, "Error Correction Coding: Mathematical Methods and Wiley, 2006 W. C. Huffman and V. Pless, "Fundamentals of Error – Correcting C 2003. 	Algorith	nms", CUP,
	3. S. Lin and D. J. Costello, "Error Control Coding: Fundamentals and 1983.	Applicat	tion",

4. R. H. Morelos-Zaragoza, "The Art of Error Correcting Codes", Wiley, 2002.

EC 9014	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	3-0-0	3
Unit I	Introduction to Electromagnetic Compatibility (EMC), EMC Requirements for	6	Hrs
	Electronic Systems, Radiated Emissions, Conducted Emissions, Spectra of Digital		
	Waveforms, The Spectrum of Trapezoidal (Clock) Waveforms, pectral Bounds for		
	Trapezoidal Waveforms, Effect of Rise/Falltime on Spectral Content, Bandwidth		
	of Digital Waveforms, Effect of Repetition Rate and Duty Cycle, Effect of		
	Ringing (Undershoot/Overshoot)		
Unit II	Transmission Lines and Signal Integrity: The Transmission-Line	6	Hrs
	Equations, Printed Circuit Board (PCB) Structures, High-Speed Digital		
	Interconnects and Signal IntegritySinusoidal Excitation of the Line and the		
	Phasor Solution		
Unit III	Conducted Emissions and Susceptibility: Measurement of Conducted	8	Hrs
	Emissions.1 The Line Impedance Stabilization Network (LISN).Common- and		
	Differential-Mode Currents Again. Power Supply Filters. Basic Properties of		
	Filters, A Generic Power Supply Filter Topology, Effect of Filter Elements on		
	Common		
Unit IV	Differential-Mode Currents, Separation of Conducted Emissions into Common	6	Hrs
	and Differential-Mode Components for Diagnostic Purposes, Power		
	Supplies, Linear Power Supplies, Switched-Mode Power Supplies (SMPS), Effect		
	of Power Supply Components on ConductedEmissions, Power Supply and Filter		
	Placement, Conducted Susceptibility		
Unit V	Crosstalk: Three-Conductor Transmission Lines and Crosstalk, The	8	Hrs
	Transmission-Line Equations for Lossless Lines, The Per-Unit-Length		
	Parameters, Homogeneous versus Inhomogeneous Media, Wide-Separation		
	Approximations for Wires, Numerical Methods for Other Structures, Wires with		
	Dielectric Insulations(Ribbon Cables),Rectangular Cross-Section		
	Conductors(PCB Lands), The Inductive – Capacitive Coupling Approximate		
	Model, Frequency-Domain Inductive-Capacitive Coupling Model, Inclusion of		
	Losses: Common-Impedance Coupling, Time-Domain Inductive - Capacitive		
	Coupling Model		
Unit VI	Shielding Effectiveness: Far-Field Sources, Exact Solution, Approximate	8	Hrs
	Solution, Shielding Effectiveness: Near-Field Sources, Near Field versus Far		
	Field, Electric Sources, Magnetic Sources, Low-Frequency, Magnetic Field		
	Shielding, Effect of Apertures, System Design for EMC.		
Text/References:			
	1. Clayton R Paul: Introduction to Electromagnetic Compatibility Wiley 2nd Edit	tion	
	2. V.P. Kodali, "Engineering Electromagnetic Compatibility", S. Chand & Co. Li	td., New	
	Delhi, 2000.		
	3. "Electromagnetic Interference and Compatibility", IMPACT series, IT	I-Delhi,	
	Modules 1-9.		
	4. Keiser, "Principles of Electromagnetic Compatibility", 3rd ed., , Artech House		

EC 9015	CHANNEL MODELLING FOR WIRELESS COMMUNICATION	3-0-0	3
Unit I	Propagation Mechanisms - Free space propagation, reflection and transmission, diffraction scattering on rough surfaces, wave guiding	6	Hrs
Unit II	Statistical Description of Wireless Channels - The time-invariant two-path model, time-variant two-path model, small-scale fading without line-of-sight, small-scale fading with line-of-sight, Doppler spectra, level crossing rate and random FM large-scale fading	6	Hrs
Unit III	Wideband Channel Characterization - Narrowband vs. wideband systems, system-theoretic description of propagation channels, the WSSUS model, description methods for time dispersion, description methods for angular dispersion	8	Hrs
Unit IV	Channel Models - Narrowband models, wideband models, spatial models, deterministic models, models for ultra wideband channels	6	Hrs
Unit V	Channel Sounding - Time-domain methods, frequency-domain methods, generalizations, spatially resolved methods	8	Hrs
Unit VI	Antenna aspects in wireless systems - Requirements for antennas in mobile radio, antennas for mobile stations, antennas for base stations, aspects of multiple antenna systems	8	Hrs
Text/References:			
	 Wireless Communications, 2nd Edition, by Andreas F. Molisch, Wiley Wireless Communications, 2nd Edition, by Andrea Goldsmith, Cambridge Un Press 	niversity	

3. Wireless Communication: Principles and Practice, 2nd Edition, by Theodore Rappaport, Prentice Hall

EC 9016	HIGH SPEED COMMUNICATION TECHNIQUES	3-0-0	3
Unit I	High Speed Networks: Frame Relay Networks – Asynchronous transfer mode –	10	Hrs
	ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM		
	Service Categories – AAL. High Speed LAN's: Fast Ethernet, Gigabit Ethernet,		
	Fiber Channel – Wireless LAN's: applications, requirements – Architecture of		
	802.11		
Unit II	Congestion and Traffic Management: Queuing Analysis - queuing Models -	8	Hrs
	Single Server Queues – Effects of Congestion – Congestion Control – Traffic		
	Management – Congestion Control in Packet Switching Networks – Frame Relay		
	Congestion Control		
Unit III	TCP and ATM Congestion Control: TCP Flow Control - TCP Congestion	14	Hrs
	Control – Retransmission – Timer Management – Exponential RTO back off –		
	KARN's Algorithm – Window Management – Performance of TCP over ATM		
	Traffic and Congestion control in ATM – Requirements – Attributes – Traffic		
	Management Frame work, Traffic control – ABR traffic Management - ABR rate		
	control, RM cell formats ABR Capacity allocations – GFR traffic management		
Unit IV	Integrated and Differentiated Services: Integrated Services Architecture –	10	Hrs
	Approach, Components, Services – Queuing Discipline, FO, PS, BRFO, GPS,	-	
	WFO – Random Farly Detection Differentiated Services Protocols for OOS		
	Support: RSVP – Goals & Characteristics Data Flow RSVP operations Protocol		
	Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking		
	Protocol details BTP Protocol Architecture Data Transfer Protocol PTCP		
Toxt/Deforences	11010col details – KII – 11010col Aleinteeture, Data Hanslei 11010col, KTCI		
Text/References.	1 High Speed Networks and Internet" Communication networks Edition 2	001 D v	
	1. High Speed Networks and Internet, Communication networks, Edition, 2 William Stallings, can Hansourt Asia Dut Ltd	001, Ву	
	winnann Stannings, can marcourt Asia rvi. Liu	Suriale and	
	2. INIPLS and VPIN architecture, volume 1 and 2, 2003, by Irvan Pepeinjk, Jim C	Juichard	

and Jeff Apcar, Cisco Press.3. Encyclopedia of Networking and telecommunications, 2001, By Tom Sheldon, TMH.

EC 9017	SIGNAL PROCESSING FOR COMMUNICATION	3-0-0	3
Unit I	History and philosophy. Descret time signals. Definitions: Descrete time	6	Hrs
	abstraction, Basic signals, deigital frequency, Elementary operator, reproducing		
	formula, energy and power. Classes of Descret time signals		
Unit II	Signal space and Hilbert spaces: Euclidean Geometry, Vector spaces to Hilbert	8	Hrs
	spaces.Subspace, base and projections. Finite length signals, Periodic signals and		
	Infinite sequences. Fourier analysis: DFT, DFS, DTFT, Relationship between		
	transforms, FT Properties, Time and Frequency Analysis		
Unit III	Stochastic Signal Processing: Random Variables, Random Vectors, Random	10	Hrs
	Processes. Spectral representation of Stataionary Random Processes: Power		
	Spectral Density, PSD of a Stationary Process, White Noise. Stochastic Signal		
	Processing		
Unit IV	Interpolation and Sampling: Continuous Time Signals. Interpolation: Local	8	Hrs
	Interpolation, Polynomial interpolation, Sinc interpolation. Sampling Theorem.		
	Anliasing: Intuition and proof. Non-Bandlimitted Signals. Descrete Time		
	processing of analog Signals: Digital differentiator, Fractional Delays		
Unit V	Data Convertors and Multirate Signal Processing: Quantizzation, Uniform	10	Hrs
	Scalar Quantization, Advanced Quantizer, ADC and DAC. Multirate Signal		
	processing: Downsampling: Downsampling OperatorProperties, Frequency		
	Domain Representation. Upsampling and Interpolation. Oversampled ADC and		
	DAC.		
Text/References:			
	1. Paolo Prandoni, Martin Vetterli, "Signal Processing for Communications" EPE	EL Press.	
	2 Fredric J Harris "Multirate Signal Processing for Communication Systems" P	earson	

- Fredric J. Harris, "Multirate Signal Processing for Communication Systems" Pearson.
 Martin Vetterli, Jelena Kovacevic, Vivek K Goyal, "Foundations of Signal Processing".
- 4. Ananthram Swami, Qing Zhao, Yao-Win Hong, Lang Tong, "Wireless Sensor Networks: Signal Processing and Communications Perspectives" Wiley.

EC 9018	ADVANCED DIGITAL SIGNAL PROCESSING	3-0-0	3
Unit I	Parametric methods for power spectrum estimation: Relationship between the auto correlation and the model parameters – The Yule – Walker method for the AR Model Parameters – The Burg Method for the AR Model parameters – unconstrained least-squares method for the AR Model parameters – sequential estimation methods for the AR Model parameters – selection of AR Model order	6	Hrs
Unit II	Adaptive signal processing :FIR adaptive filters – steepest descent adaptive filter – LMS algorithm – convergence of LMS algorithms – Application: noise cancellation – channel equalization – adaptive recursive filters – recursive least squares.	8	Hrs
Unit III	Multirate signal processing :Decimation by a factor D – Interpolation by a factor I – Filter Design and implementation for sampling rate conversion: Direct form FIR filter structures – Polyphase filter structure.	10	Hrs
Unit IV	Linear prediction and optimum linear filters: Innovations Representation of a Stationary Random Process, Forward and Backward Linear Prediction, Solution of the Normal Equations, Levinson-Durbin Algorithm, Schiir Algorithm, Properties of the Linear Prediction-Error Filters, Wiener Filters for Filtering and Prediction	8	Hrs
Unit V	Wavelet transforms :Fourier Transform : Its power and Limitations – Short Time Fourier Transform – The Gabor Transform - Discrete Time Fourier Transform and filter banks – Continuous Wavelet Transform – Wavelet Transform Ideal Case – Perfect Reconstruction Filter Banks and wavelets – Recursive multi- resolution decomposition – Haar Wavelet – Daubechies Wavelet.	10	Hrs
Text/References:	1		
	1. John G.Proakis, Dimitris G.Manobakis, Digital Signal Processing, Prin Algorithms and Applications, Third edition, (2000) PHI.	nciples,	
	2. Monson H.Hayes – Statistical Digital Signal Processing and Modeling, 2002.	Wiley,	
	3. L.R.Rabiner and R.W.Schaber, Digital Processing of Speech Signals, I Education(1979).	Pearson	
	4. Roberto Crist, Modern Digital Signal Processing, Thomson Brood (2004)	ks/Cole	
	5. Raghuveer. M. Rao, Ajit S.Bopardikar, Wavelet Transforms, Introduce Theory and applications, Pearson Education, Asia, 2000	ction to	

EC 9019	VLSI TECHNOLOGY	3-0-0	3
Unit I	Environment for VLSI Technology: Clean room and safety requirements.	7	Hrs
	Wafer cleaning processes and wet chemical etching techniques. Solid State		
	diffusion modelling and technology; Ion Implantation modeling, technology		
	and damage annealing		
Unit II	Oxidation and Lithography: Kinetics of Silicon dioxide growth both for	9	Hrs
	thick, thin and ultrathin films. Oxidation technologies in VLSI and		
	ULSI; Photolithography, E-beam lithography and newer lithography		
	techniques for VLSI/ULSI; Mask generation		
Unit III	Chemical Vapor Deposition techniques : CVD techniques for deposition of	14	Hrs
	polysilicon, silicon dioxide, silicon nitride and metal films; Epitaxial growth		
	of silicon; modelling and technology.Metal film deposition : Evaporation		
	and sputtering techniques. Failure mechanisms in metal interconnects;		
	Multi-level metallization schemes		
Unit IV	Plasma and Rapid Thermal Processing: PECVD, Plasma etching and RIE	12	Hrs
	techniques; RTP techniques for annealing, growth and deposition of various		
	films for use in ULSI.Process integration for NMOS, CMOS and Bipolar		
	circuits; Advanced MOS technologies.		
Text/References:			
	 C.Y. Chang and S.M.Sze (Ed), ULSI Technology, McGraw Hill Compa 1996. 	nies Inc,	

- S.K. Ghandhi, VLSI Fabrication Principles, John Wiley Inc., New York, 1983.
 S.M. Sze (Ed), VLSI Technology, 2nd Edition, McGraw Hill, 1988.

EC 9020	CMOS ANALOG IC DESIGN	3-0-0	3
Unit I	A Review of MOS equations in weak (sub-threshold) and strong inversion	5	Hrs
	regions, MOS controlled switch; MOS diode; MOS capacitor; MOS active		
	resistor, single-stage common source, common gate and common drain		
** . **	amplifiers.	-	
Unit II	MOS current mirrors (simple, cascode and low-voltage wide swing types),	6	Hrs
	supply and temperature independent biasing method. Multiple current source		
	and sink design		
Unit III	Stability analysis of closed loop amplifier, loop-gain, frequency and time	6	Hrs
	domain behavior, open-loop gain and gain bandwidth product, gain and		
	phase cross-over frequencies, multiple poles and zeros of closed loop		
	amplifier, pre-dominant and non-dominant poles, gain margin and phase		
	margin optimization for stable system design, various frequency-		
	compensation techniques (Miller's and feed-forward path)		
Unit IV	Op-amp at the block level, ideal and real behaviors of op-amp, multi-stage	6	Hrs
	op-amp and its frequency compensation, Two-stage current mirror op-amp,		
	telescopic and folded cascode op-amp design equations, non-ideal behavior		
	such as slew rate, DC off-set, Ibias offset and device mismatch effects.	_	
Unit V	Voltage gain, limit of input common mode range (ICMR), significance of	7	Hrs
	CMRR and PSRR, inverting and non-inverting amplifiers, op-amp-mismatch		
	and noise effects, single-ended and fully differential op-amps, common-		
	mode feedback circuit for FD-Op-amp, MOS thermal and flicker noise		
** * ***	equations, O noise and Inoise spectral densities, noise corner frequency		
Unit VI	Operational transconductance amplifier (OTA), transconductance gain	4	Hrs
	equations in weak and strong inversion regions, two-stage OTA design		
	(telescopic, cascode and folded-cacode types), single ended and fully-		
	differential OTAs, frequency compensation techniques to increase phase		
TT · · TTT	margin for stable OTA structures.	6	TT
Unit VII	Voltage and current reference, band-gap reference; beta multiplier, active	6	Hrs
	RC bi-quadratic filters using integrators loop, switched capacitor (SC) filter,		
Tout/Defense	OTA-C bi-quadratic filters		
Text/References:	1 Analog Circuit Design, Art. Science and Demonstities (EDN Series fo	n Dasian	
	Finding Clicuit Desigli. Alt, Science and Feisonanties (EDN Series 10 Engineers) (Deperheals), Jim Williams, Newness Deprint edition, 1001	i Design	
	Analog Integrated Circuit Design, Devid Johns and Kan Martin, John	Wilow &	
	2. Analog integrated Circuit Design, David Johns and Ken Martin, John Song 1007	whey a	
	Mixed Analog Digital VISI Devices and Technology (An introduce	tion) V	
	Tsividis World Scientific New Jersey 2002	uon <i>)</i> , 1.	
	4 Analysis and design of Analog Integrated Circuits Gray Hurst La	wis and	
	Meyer 4th Edition John Wiley and Sons	wis, and	
	meyer, the Landon, some they and bons.		

EC 9021	LOW POWER VLSI DESIGN	3-0-0	3
Unit I	Introduction: Power dissipation analysis, Physics of Power Dissipation in	9	Hrs
	CMOS FET Devices, Dynamic power, Static power		
Unit II	Low-power circuit techniques –Voltage scaling and threshold-voltage hurdle	7	Hrs
	in low-power design, Low power design Using Energy Recovery Technique		
Unit III	Advanced Techniques - Low Power CMOS VLSI Design, Low-power	10	Hrs
	circuit level and device level approach		
Unit IV	Low-power Analog and digital design issues in weak inversion and strong	6	Hrs
	inversion regions of operation		
Unit V	Power Estimation - Synthesis for Low Power - Design and Test of Low	8	Hrs
	Voltages - CMOS Circuits.		
Text/References:	-		
	1 Gary Yean "Practical Low Power Digital VI SI Design" 1997		

Gary Yeap " Practical Low Power Digital VLSI Design",1997.
 Kaushik Roy, Sharat Prasad, "Low Power CMOS VLSI Circuit Design", 2000.

EC 9022	DIGITAL IC DESIGN	3-0-0	3
Unit I	Introduction; Metrics; Switch Logic; Process; Gates; MOS Transistor; Inverter VTC,MOS Capacitor; Inverter Delay; Power Buffer Sizing; Wires;	9	Hrs
	CMOS Logic; Logical Effort; Process variation Effects, Introduction to VLSI fabrication.		
Unit II	Memory; Decoders; Pass Transitor; Dynamic and Static Logic; Domino	7	Hrs
	Logic; Scaling; Adders; Multipiers; Latches; Timing; Clock; SRAM; Design		
	for Performance; Power Performance Tradeoff.		
Unit III	Analysis and Design of Digital Integrated Circuits. Circuit analysis of	14	Hrs
	piecewise linear single energy storage element networks. Rules for		
	determining states of diodes and transistors. Bipolar junction and field effect		
	transistors as switches.		
Unit IV	Basic digital logic gates. Integrated circuit logic and building blocks (TTL,	10	Hrs
	MOS, CMOS, ECL, Integrated Injection Logic). Sweep circuits (constant		
	current, Miller, bootstrap), Monostable, Astable, and Bistable (Schmitt		
	wave generator, EM function generator design)		
Text/References	wave generator, 1 w function generator design).		
rext/references.	1 Ivan SutherInd Robert F Scoull David Harris Logical Effort: Design	ning Fast	
	CMOS Circuits	ing rust	
	2. N. Weste and K. Eshranghian, Principles of CMOS VLSI Design,	Addison	
	Wesley. 1985		
	3 I. Glaser and D. Dobberpubl. The Design and Analysis of VI SI Circuits	Addison	

- L. Glaser and D. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison Wesley, 1985
- 4. C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.
- 5. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997.

EC 9023	CAD FOR VLSI	3-0-0	3
Unit I	VLSI Physical Design Automation: VLSI Design Cycle, New Trends in	9	Hrs
	VLSI Design Cycle, Physical Design Cycle, New Trends in Physical		
	Design Cycle, Design Styles, System Packaging Styles		
Unit II	Partitioning, Floor Planning, Pin Assignment and Placement: Partitioning -	7	Hrs
	Problem formulation, Classification of Partitioning algorithms, Kernighan-		
	Lin Algorithm, Simulated Annealing, Floor Planning – Problem		
	formulation, Classification of floor planning algorithms, constraint		
	based floor planning, Rectangular Dualization, Pin Assignment –		
	Problem formulation, Classification of pin assignment algorithms,		
	General and channel Pin assignments, Placement – Problem formulation,		
	Classification of placement algorithms, Partitioning based placement		
	algorithms		
Unit III	Global Routing and Detailed Routing: Global Routing – Problem	10	Hrs
	formulation, Classification of global routing algorithms, Maze routing		
	algorithms, Detailed Routing – Problem formulation, Classification of		
T T T T T	routing algorithms, Single layer routing algorithms.	<i>.</i>	
Unit IV	Physical Design Automation of FPGAs: FPGA Technologies, Physical	6	Hrs
	Design cycle for FPGAs, Partitioning, Routing – Routing Algorithm for the		
	Non - Segmented model, Routing Algorithms for the Segmented Model;		
	Physical Design Automation of MCMIS: Introduction to MCM Technologies,		
	MUM Physical Design Cycle Chin Janut and Output Circuita ESD Protection Janut Circuita Output	0	I I.u.a
Unit V	Circuits and poise. On ship, alook Constantion, and Distribution Latch up	ð	Hrs
	end its provention		
Taxt/Deformance:	and its prevention		
I CAUNCICICICES.	1 N.A. Sherwani "Algorithms for VI SI Physical Design Automation " 1999		
	2 S H Gerez "Algorithms for VI SI Design Automation " 1008	•	
	2. S.H.Gerez, Algorithms for VLSI Design Automation , 1790.		

EC 9024	DIGITAL AUDIO AND VIDEO COMMUNICATION	3-0-0	3
Unit I	Introduction, Speech production model, speech coding, Quantizers for speech	6	Hrs
	signal, mew-law and optimum Quantizer, Adaptive quantizer, Differential		
	quantization, LDM and ADM, DPCM and Adaptive prediction, linear prediction		
	of speech		
Unit II	CCITT recommendations for speech digitization, HDTV, Low resolution TV and	8	Hrs
	videoconferencing requirements		
Unit III	Frequency domain waveform coding of speech-LTC, ATC; Parameter coding of	10	Hrs
	speech channel, format and LPC vecoders		
Unit IV	Coding of monochrome and colour video signals-Transform and Adaptive	8	Hrs
	transform coding; Sub band coding; Vector quantization; Inter-frame and Hybrid		
	coding; Delayed decision and run length coding		
Unit V	Effects of transmission errors; Audio and Video conference; Video telephone	10	Hrs
Text/References:			
	1. Digital processing of speech signals by Rabiner L.R., Prentice Hall		
	2. Principles of Computer Speech by I.H.Witten		
	3. Digital speech : Coding for Low Bit Rate Communication Syst	em by	
	A.M.Kondoz, Willey, 2nd ed.		
	4. Voice and Data Communication handbook by R.J.Bates, McGrow Hill		

5. A practical handbook of Speech Coder by R.Goldberg and L.Rick, CRC Pr

EC 9025	DESIGN OF SEMICONDUCTOR MEMORIES	3-0-0	3
Unit I	RANDOM ACCESS MEMORY TECHNOLOGIES Static Random Access	9	Hrs
	Memories (SRAMs): SRAM Cell Structures-MOS SRAM Architecture-		
	MOS SRAM Cell and Peripheral Circuit Operation-Bipolar SRAM		
	Technologies-Silicon On Insulator (SOI) Technology-Advanced SRAM		
	Architectures and Technologies- Application Specific SRAMs. Dynamic		
	Random Access Memories (DRAMs): DRAM Technology Development-		
	CMOS DRAMs-DRAMs Cell Theory and Advanced Cell Strucutures-		
	BiCMOS DRAMs-Soft Error Failures in DRAMs-Advanced DRAM		
	Designs and Architecture-Application Specific DRAMs		
Unit II	NONVOLATILE MEMORIES Masked Read-Only Memories (ROMs)-	7	Hrs
	High Density ROMs-Programmable Read-Only Memories (PROMs)-		
	Bipolar PROMs-CMOS PROMs-Erasable (UV) - Programmable Road-Only		
	Memories (EPROMs)-Floating- Gate EPROM Cell-One-Time		
	Programmable (OTP) Eproms-Electrically Erasable PROMs (EEPROMs)-		
	EEPROM Technology And Arcitecture-Nonvolatile SRAM-Flash Memories		
	(EPROMs or EEPROM)-Advanced Flash Memory Architecture		
Unit III	MEMORY FAULT MODELING, TESTING, AND MEMORY DESIGN	10	Hrs
	FORTESTABILITY AND FAULT TOLERANCE RAM Fault Modeling,		
	Electrical Testing, Peusdo Random Testing-Megabit DRAM Testing-		
	Nonvolatile Memory Modeling and Testing-IDDQ Fault Modeling and		
	Testing-Application Specific Memory Testing.		
Unit IV	SEMICONDUCTOR MEMORY RELIABILITY AND RADIATION	6	Hrs
	EFFECTS General Reliability Issues-RAM Failure Modes and		
	Mechanism-Nonvolatile Memory Reliability-Reliability Modeling and		
	Failure Rate Prediction-Design for Reliability-Reliability Test Structures-		
	Reliability Screening and Qualification. Radiation Effects-Single Event		
	Phenomenon (SEP)-Radiation Hardening Techniques-Radiation Hardening		
	Process and Design Issues-Radiation Hardened Memory Characteristics-		
	Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water		
	Level Radiation Testing and Test Structures		
Unit V	ADVANCED MEMORY TECHNOLOGIES AND HIGH-DENSITY	8	Hrs
	MEMORYPACKAGING TECHNOLOGIES Ferroelectric Random Access		
	Memories (FRAMs)-Gallium Arsenide (GaAs) FRAMs-Analog Memories-		
	Magnetoresistive Random Access Memories (MRAMs)-Experimental		
	Memory Devices. Memory Hybrids and MCMs (2D)-Memory Stacks and		
	MCMs (3D)-Memory MCM Testing and Reliability Issues-Memory Cards-		
	High Density Memory Packaging Future Directions		
Text/References:			
	1. Ashok K.Sharma, " Semiconductor Memories Technology, Testing and R	eliability	
	", Prentice-Hall of India Private Limited, New Delhi, 1997.		
	2. R. Jacob Baker, "DRAM"		

EC 9026	MEMS AND MICROSYSTEMS TECHNOLOGY	3-0-0	3
Unit I	Historical Background: Silicon Pressure sensors, Micromachining,	7	Hrs
	MicroElectroMechanical Systems		
Unit II	Microfabrication and Micromachining : Integrated Circuit Processes, Bulk	8	Hrs
	Micromachining : Isotropic Etching and Anisotropic Etching, Wafer		
	Bonding, High Aspect-Ratio Processes (LIGA)		
Unit III	Physical Microsensors: Classification of physical sensors, Integrated,	9	Hrs
	27		

	Intelligent, or Smart sensors, Sensor Principles and Examples : Thermal sensors, Electrical Sensors, Mechanical Sensors, Chemical and Biosensors		
Unit IV	Microactuators : Electromagnetic and Thermal microactuation, Mechanical design of microactuators, Microactuator examples, microvalves, micropumps, micromotors-Microactuator systems: Success Stories, Ink-Jet printer heads, Micro-mirror TV Projector	9	Hrs
Unit V	Surface Micromachining: One or two sacrificial layer processes, Surface micromachining requirements, Polysilicon surface micromachining, Other compatible materials, Silicon Dioxide, Silicon Nitride, Piezoelectric materials, Surface Micromachined Systems: Success Stories, Micromotors, Gear trains, Mechanisms, RF/Electronics device/systemand Applications.	9	Hrs

Text/References:

- 1. Stephen D. Senturia, "Microsystem Design" by, Kluwer Academic Publishers, 2001.
- 2. Marc Madou, "Fundamentals of Microfabrication" by, CRC Press, 1997.Gregory Kovacs, "Micromachined Transducers Sourcebook" WCB McGraw-Hill, Boston, 1998.
- 3. M.-H. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes" by Elsevier, New York, 2000.

EC 9027	ADVANCED COMPUTER ARCHITECTURE	3-0-0	3
Unit I	Introduction: review of basic computer architecture, quantitative techniques	9	Hrs
	in computer design, measuring and reporting performance. CISC and RISC		
I I: 4 II	processors Direction and arithmetic ningline data becaude	7	I I.a.o
Unit II	Pipenning : Basic concepts, instruction and arithmetic pipenne, data nazards,	/	Hrs
	Control nazards, and structural nazards, techniques for handing nazards.		
	Exception handling, Pipeline optimization techniques, Compiler techniques		
T T T T T T T T T T	for improving performance	10	
Unit III	Hierarchical memory technology: Inclusion, Coherence and locality	10	Hrs
	properties; Cache memory organizations, Techniques for reducing cache		
	misses; Virtual memory organization, mapping and management techniques,		
** • • • •	memory replacement policies	-	
Unit IV	Instruction-level parallelism: basic concepts, techniques for increasing ILP,	6	Hrs
	superscalar, super pipelined and VLIW processor architectures, Array and		
	Vector processors		
Unit V	Multiprocessor architecture: taxonomy of parallel architectures. Centralized	8	Hrs
	shared-memory architecture: synchronization, memory consistency,		
	interconnection networks. Distributed shared-memory, architecture, Cluster		
	computers, Non Von Neumann architectures: data flow computers, reduction		
	computer architectures, systolic architectures		
Text/References:			
	1. Kai Hwang, "Advanced Computer Architecture ", McGraw Hill Inter	mational,	
	1993.		
	2. William Stallings, "Computer Organization and Architecture". N	lacmillan	

- William Stallings, "Computer Organization and Architecture ", Macmillan Publishing Company, 1990.M.J. Quinn, "Designing Efficient Algorithms for Parallel Computers ", McGraw Hill International, 1994.
- 3.

EC 9028	ANALOG FILTER DESIGN	3-0-0	3	
Unit I	Introduction: transfer function, pass bands and attenuation band of ideal and realizable filters, comparison between passive and active filters, Design of second order filters (all types i.e. low pass, high pass, band pass, band reject, all pass) with unity and variable gain. Design of second order state variable filters, switched capacitor circuits, switched capacitor integrators (inverting and non-inverting type), universal SC filters, frequency limitation of SC	9	Hrs	
Unit II	Inters, multiple order cascade filters, sensitivity of passive and active filters	7	Hre	
Unit if	OTA, OTA characteristic, OTA biasing techniques, OTA based tunable filters, active only Biquadratic filters, high frequency OTA RF filters, two integrators loop g _m -C universal Biquadratic filters, OTA based LC filters, Voltage mode vs current mode filters, Adjoint and transpose conversion methods	,	1115	
Unit III	Introduction to Current mode Filters: Current conveyors, all generation of	14	Hrs	
	current conveyors and their transfer matrix, Bi-polar and CMOS CC cells, detailed analysis of second generation current conveyors (CC-II), Filter design methods using CC-I and CC-II, CCC-II			
Unit IV	Introduction to Current Feedback operational Amplifier: CC-II and buffer based CFOA CMOS Cell, merits of CFOA over op-amp, CFOA based oscillator, CFOA based active universal filters	10	Hrs	
Text/References:	···· ··· , ···· · · · · · · · · · ·			
	1. Design with Operational Amplifier and Analog Integrated Circuits, Third	l Edition		
	by Sergio Franco, Tata Mc Graw-Hill.			
	 Linear Integrated Circuits, by S Salivahannn, V S Kanchana Bhaaskaran, Graw-Hill Companies. 	The Mc		
	 A Text book of Operational Transconductance Amplifier and Analog Integrated Circuits, by Tahira Parveen, Reprint 2010, I.K. International Publishing HousePvt. Ltd. New Delbi & Bangalore, ISBN: 978-93-80026-55-8 			
	4. Low Voltage Low Power CMOS Current Conveyorsby Giuseppe Ferri an	d Nicola		
	C. Guerrini, Kluwer Academic Publisher Boston/ Dordrecht/ London, 200	3.ISBN:		

1-4020-7486-7.

EC 9029	VLSI SIGNAL PROCESSING	3-0-0	3
Unit I	Introduction to DSP systems - Iteration Bound - Pipelined and parallel processing	9	Hrs
Unit II	Retiming - Unfolding - Algorithmic strength reduction in filters and transforms.	7	Hrs
Unit III	Systolic architecture design - fast convolution - Pipelined and parallel recursive and adaptive filters.	10	Hrs
Unit IV	Scaling and round off noise - Digital lattice filter structures - Bit level arithmetic architecture - Redundant arithmetic	6	Hrs
Unit V	Numerical strength reduction - Synchronous, wave and asynchronous pipe lines - low power design - programmable digital signal processors	8	Hrs
Text/References:			
	1. Keshab K.Parthi, "VLSI Digital Signal Processing systems, Desimplementation", Wiley, Inter Science, 1999.	ign and	
	2. Mohammed Isamail and Terri Fiez, " Analog VLSI Signal and Info Processing ", Mc Graw-Hill, 1994.	ormation	
	3. S.Y. Kung, H.J. White House, T. Kailath, "VLSI and Modern Signal Proc Prentice Hall, 1985.	essing ",	
	4. Jose E. France, Yannis Tsividis, "Design of Analog - Digital VLSI Cir Telecommunication and Signal Processing ", Prentice Hall, 1994.	cuits for	

EC 9030	VLSI DATA CONVERSION CIRCUIT	3-0-0	3
Unit I	Sampling, Spectral properties of sampled signals, Oversampling and its implications on anti-alias filter design, Time Interleaved Sampling, Analysis of a Ping-Pong Sampling system. Analysis of Offset and Gain Errors in	7	Hrs
	Time-Interleaved Sample and Holds.		
Unit II	Bottom Plate Sampling, Gate Bootstrapped Switch, the Nakagome Charge- Pump, Characterizing a Sample-and-Hold, Correct choice of input frequency. Discrete Fourier Series Refresher FET Leekage and the	8	Hrs
	Rectangular Window, Spectral Windows, the Hann Window, the Blackman		
	Window	0	
Unit III	Switch Capacitor Circuits, Parasitic Insensitive SC Amplifiers, Nonidealities in SC Amplifiers: Finite Opamp Gain and DC Offset., Finite Opamp Gain-	8	Hrs
	Bandwidth Product, Introduction to Fully Differential Operation	0	
Unit IV	Integral Nonlinearity (INL), Dynamic Characterization of ADCs, SQNR, Quantization Noise Spectrum, SFDR, Flash A/D Converter Basics, the Basenerative Lateb. Preserve Offset Correction (Auto garaing)	9	Hrs
Unit V	Coupling Consister Considerations in an Auto zeroad Dreamn Transister	10	I Ima
Unit v	Level Preamp Design, Timing issues in a flash ADC. Bubble Correction Logic in a Flash ADC, Comparator Meta-stability, D/A Converter Basics, INL/DNL, DAC Spectra and Pulse Shapes.NRZ vs RZ DACs and	10	HIS
	Oversampled Approaches to Data Conversion.		

Text/References:

- 1. Understanding Delta Sigma Data Converters: R. Schreier, Wiley
- 2. Understanding Delta-Sigma Data Converters : R.Schreier and G.Temes
- 3. John Wiley CMOS Data Converters for Communications: N.Tan, Springer.

EC 9031	TESTING AND VERIFICATION OF VLSI CIRCUITS	3-0-0	3
Unit I	Scope of testing and verification in VLSI design process. Issues in test and	9	Hrs
	verification of complex chips, embedded cores and SOCs		
Unit II	Fundamentals of VLSI testing. Fault models. Automatic test pattern generation. Design for testability	7	Hrs
Unit III	Scan design. Test interface and boundary scan. System testing and test for	14	Hrs
	SOCs. Iddq testing. Delay fault testing. BIST for testing of logic and memories. Test automation		
Unit IV	Design verification techniques based on simulation, analytical and formal approaches. Functional verification. Timing verification. Formal verification. Basics of equivalence checking and model checking. Hardware emulation	10	Hrs
Text/References:			
	 M. Bushnell and V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000. M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and 		

- Testable Design", IEEE Press, 1990.
- 3. T.Kropf, "Introduction to Formal Hardware Verification", Springer Verlag, 2000.
- 4. P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Verification-Methodology and Techniques", Kluwer Academic Publishers, 2001.

EC 9032	DIGITAL SYSTEM DESIGN USING FPGA	3-0-0	3
Unit I	Introduction to Digital design, hierarchical design, controller (FSM), case study	9	Hrs
Unit II	FSM issues, timing issues, pipelining, resource sharing, metastability, synchronization	7	Hrs
Unit III	MTBF Analysis, setup/hold time of various types of flip-flops, synchronization between multiple clock domains, reset recovery, proper resets	10	Hrs
Unit IV	VHDL: different models, simulation cycles, process, concurrent and sequential statements, loops, delay models, library, packages, functions, procedures, coding for synthesis, test bench	6	Hrs
Unit V	FPGA: logic block and routing architecture, design methodology, special resources, Virtex-II, Stratix architectures, programming FPGA, constraints, STA, timing closure, case study.	8	Hrs
Text/References:			
	1. Wakerly, J.F., Digital Design: Principles and Practices, Prentice Hall.		
	2. Kevin Skahil, VHDL For Programmable Logic, Addison Wesley.		
	3. FPGA Data sheets, Application Notes.		

4. Current literature from relevant journals and conference proceedings.

EC 9033	PHOTONICS INTEGRATED CIRCUITS	3-0-0	3
Unit I	Principles: Introduction to photonics, optical waveguide theory, numerical	16	Hrs
	techniques and simulation tools, photonic waveguide components –		
	couplers, tapers, bends, gratings. Electro-optic, acousto-optic, magneto-optic		
	and non-linear optic effects. Modulators, switches, polarizers, filters,		
	resonators, optoelectronics integrated circuits. Amplifiers, mux/demux,		
	transmit receive modules		
Unit II	Technology: materials – glass, lithium niobate, silicon, compound semiconductors, polymers. Fabrication – lithography, ion-exchange,	14	Hrs
	deposition, diffusion. Process and device characterization. Packaging and		
	environmental issues		
Unit III	Applications: photonic switch matrices. Planar lightwave circuits, delay line	8	Hrs
	circuits for antenna arrays, circuits for smart optical sensors. Optical signal		
	processing and computing. Micro-opto-electro-mechanical systems.		
Unit IV	Photonic bandgap structures. VLSI photonics	4	Hrs
Text/References:			
	1. Pollock, C.R., and Lip Son, M., Integrated Photonics, Kluwer Pub., 2003.		
	2. Tamir, T. (ed.), Guided-wave optoelectronics, Second Edn, Springe 1990	r Verlag,	
	3. Nishihara, H., Haruna, M., and Suhara, T., Optical Integrated Circuits.	McGraw	
	Hill, 1988.		
	4. Murphy, E.J. (ed.). Integrated Optical Circuits and Components: Des	sign and	
	Applications, Marcel and Dekker, 1999.	0	
	5. Current literature: Special issues of journals and review articles.		
	· · · · · · · · · · · · · · · · · · ·		

EC 9034	NANOELECTRONICS	3-0-0	3
Unit I	INTRODUCTION TO NANOTECHNOLOGY: Background to nanotechnology: Types of nanotechnology and nanomachines Molecular Nanotechnology: Electron microscope nanodots; nanolithography. Nanomaterials: preparation – plasma arcing – chemical vapor deposition – sol- gels – electrodeposition – ball milling – applications	6	Hrs
Unit II	FUNDAMENTALS OF NANOELECTRONICS: Fundamentals of logic devices:- Requirements – dynamic properties – threshold gates; physical limits to computations; concepts of logic devices:- classifications –spintronics – quantum cellular automata – quantum computing – DNA computer; performance of information processing systems;- of biological neurons – performance estimation for the human brain. Ultimate computation:- power dissipation limit – dissipation in reversible computation – the ultimate computer	8	Hrs
Unit III	SILICON MOSFETs & QUANTUM TRANSPORT DEVICES: Silicon MOSFETS - Novel materials and alternate concepts:- scaling rules –advanced MOSFET concepts. Quantum transport devices based on resonant tunneling:- Electron tunneling; Single electron devices for logic applications:- Single electron devices – applications of single electron devices to logic circuits	10	Hrs
Unit IV	CARBON NANOTUBES: Carbon Nanotube: Fullerenes - types – assemblies – purification of carbon nanotubes – electronic propertics – synthesis of carbon nanotubes – carbon nanotube interconnects – carbon nanotube FETs – Nanotube for memory applications – prospects of an all carbon nanotube nanoelectronics	8	Hrs
Unit V	MOLECULAR ELECTRONICS: Electrodes & contacts – functions – molecular electronic devices – first test systems – simulation and circuit design – fabrication; Future applications: MEMS – robots – random access memory – mass storage devices	10	Hrs
Text/References			
	 Michael Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmo Burkhard Raguse, Nanotechnology: Basic Science and Emerging Techn Chapman & Hall / CRC, 2002 T. Pradeap. NANO: The Essentials Understanding Nanoscience 	ons and ologies,	
	2. 1. Fradeep, NANO. The Essentials – Onderstanding Nanoscient Nanotechnology, TMH'07		
	3. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Ad Electronic Materials and Novel Devices, Wiley-VCH, 2003	lvanced	
	 George W. Hanson, "Fundamentals of Nanoelectronics", Prentice Hall, 2007. Karl Goser et.al, "Nanoelectronics and Nanosystems: From Transistors to Mand Ouantum devices", Springer, 2005. 	olecular	
	6. Mark. A. Reed and Takhee, "Molecular Electronics", American Se Publishers, 2003.	cientific	
	 Michael C. Petty, "Molecular Electronics: From Principles to Practice", John & Sons, Ltd, 2007. 	n Wiley	

EC 9035	NEURAL NETWORKS, ARCHITECTURE AND ITS APPLICATIONS	3-0-0	3
Unit I	Network architecture, Artificial intelligence and neural networks, Learning	6	Hrs
	processes, Learning with or without a teacher, Memory adoption, and statistical		
	nature of learning process		
Unit II	Single layer perception, Adaptive filtering problem, LMS Algorithm, Learning curve, Perception convergence	8	Hrs
Unit III	Multi-layer perception: Back propagation, algorithm, output presentation and	10	Hrs
	decision rule, supervised learning as optimization problem, Generalized radial		
	basics, Function network		
Unit IV	Temporal processing using feed forward network, Network Architectures,	8	Hrs
	Distributed time lagged feed forward network, Temporal back propagation		
	algorithm		
Unit V	Dynamically driven recurrent networks, Sate space model, Learning	10	Hrs
	algorithms, Real time recurrent learning, Kalman Filter, De-coupled extended		
	kalman filters		
Text/References:			
	1 Neural network- A Comprehensive foundation 2nd Ed Simon Havkin	Addison	
	Wiseley Longman New York 2001		
	2 Neural Network- Algorithms Applications and progggramming I A Freema	in and D	
	M Skapura AWI NY 2000		
	An introduction to Neural Network James A Anderson Prentice Hall of Ind	in Now	
	Dalbi	11a, 110W	

EC 9036	ADAPTIVE SIGNAL PROCESSING	3-0-0	3
Unit I	Introduction to vectors spaces, Review of notion of random variable, stochastic process, moments, ergodicity, LSI filtering of WSS processes, power density spectrum	8	Hrs
Unit II	Stochastic processes: Cross-correlation, filtering of WSS processes introduction to Wiener filtering. bandlimited processes, harmonic processes, the general linear process, and autoregressive processes stochastic models, autoregressive models, AR process, stochastic processes, MA and ARMA processes.	6	Hrs
Unit III	Simulation of AR processes and Wiener filtering. Comparison of time averages and ensemble averages. IIR Wiener filter for general linear process.	10	Hrs
Unit IV	Introduction to eignenvalue and eigenvector analysis of correlation matrix. Wiener filter using eigenvector basis, finished Wiener filter slides	8	Hrs
Unit V	Linear Prediction: FIR and IIR MMSE linear prediction. Introduction to "Backward Linear Prediction". Backward linear prediction, Gram Schmidt orthogonalization, Levinson algorithm. Prediction error filters, the lattice structure, joint-process estimation	10	Hrs
Text/References:			
	 S. Haykin, Adaptive Filter Theory, fifth edition, Prentice Hall, 2013. A. Sayed, Adaptive Filters, Wiley-IEEE Press, 2008. Available as ebook University of Ottawa library. 	through	

EC 9037	SOFT COMPUTING	3-0-0	3	
Unit I	Fuzzy Logic: Crisp set and Fuzzy set, Basic concepts of fuzzy sets, membership functions. Basic operations on fuzzy sets, Properties of fuzzy sets,	6	Hrs	
	Fuzzy relations			
Unit II	Propositional logic and Predicate logic, fuzzy If – Then rules, fuzzy mapping rules and fuzzy implication functions, Applications	10	Hrs	
Unit III	Neural Networks: Basic concepts of neural networks, Neural network architectures, Learning methods, Architecture of a back propagation network, Applications	8	Hrs	
Unit IV	Genetic Algorithms: Basic concepts of genetic algorithms, encoding, genetic modeling	8	Hrs	
Unit V	Hybrid Systems: Integration of neural networks, fuzzy logic and genetic algorithms.	10	Hrs	
Text/References:				
	1. S. Rajasekaran and G.A.Vijaylakshmi Pai Neural Networks Fuzzy Logic, and Genetic Algorithms, Prentice Hall of India.			
	2. K.H.Lee First Course on Fuzzy Theory and Applications, Springer-Verlag.			
	3 I Ven and P Langari Euzzy Logic Intelligence Control and Information	Dogreon		

3. J. Yen and R. Langari.. Fuzzy Logic, Intelligence, Control and Information, Pearson Education

EC 9038	STATISTICAL SIGNAL PROCESSING AND MODELLING	3-0-0	3
Unit I	Review of random variables: Distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector-space	6	Hrs
	representation of Random variables, Schwarz Inequality Orthogonalit principle		
	in estimation, Central Limit theorem, Random processes, wide-sense stationary		
	processes, autocorrelation and autocovariance functions, Spectral		
	representation of random signals, Wiener Khinchin theorem Properties of		
	power spectral density, Gaussian Process and White noise process, Linear		
	System with random input, Spectral factorization theorem and its importance,		
	innovation process and whitening filter, Random signal modelling: MA(q), AR(p), ARMA(p,q) models		
Unit II	Parameter Estimation Theory: Principle of estimation and applications,	6	Hrs
	Properties of estimates, unbiased and consistent estimators, Minimum Variance		
	Unbiased Estimates (MVUE), Cramer Rao bound, Efficient estimators; Criteria		
	of estimation: the methods of maximum likelihood and its properties ; Baysean		
	estimation : Mean square error and MMSE, Mean Absolute error, Hit and Miss		
	cost function and MAP estimation		
Unit III	Estimation of signal in presence of white Gaussian Noise: Linear Minimum	8	Hrs
	Mean-Square Error (LMMSE) Filtering: Wiener Hoff Equation, FIR Wiener		
	filter, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Linear Prediction		
	of Signals, Forward and Backward Predictions, Levinson Durbin Algorithm,		
	Lattice filter realization of prediction error filters		
Unit IV	Adaptive Filtering: Principle and Application, Steepest Descent Algorithm	6	Hrs
	Convergence characteristics; LMS algorithm, convergence, excess mean		
	square error, Leaky LMS algorithm, Application of Adaptive finers, KLS		
	nonstationarity		
Unit V	Kalman filtering: State-space model and the optimal state estimation problem.	8	Hrs
	discrete Kalman filter, continuous-time Kalman filter, extended Kalman filter	-	
Unit VI	Spectral analysis: Estimated autocorrelation function, periodogram, Averaging	8	Hrs
	the periodogram (Bartlett Method), Welch modification, Blackman and Tukey		
	method of smoothing periodogram, Prametric method, AR(p) spectral		
	estimation and detection of Harmonic signals, MUSIC algorithm		
Text/References:			
	1. M. Hays: Statistical Digital Signal Processing and Modelling, John Willey at 1006	nd Sons,	
	2 MD Sringth PK Rajasekaran and R Viswangthan. Statistical Signal Pro-	ocessing	
	with Applications. PHI. 1996.	seessing	
	3. Simon Haykin: Adaptive Filter Theory, Prentice Hall, 1996.		
	4. D.G. Manolakis, V.K. Ingle and S.M. Kogon: Statistical and Adaptive	e Signal	
	Processing, McGraw Hill, 2000.	2	
	5. S. M. Kay: Modern Spectral Estimation, Prentice Hall, 1987.		

EC 9039	DIGITAL IMAGE PROCESSING	3-0-0	3
Unit I	Fundamental concepts of digital geometry, Digital image representation, Fundamental steps in image processing, Elements of digital image Processing systems, Image acquisitions, Storage, Processing, Communication, Display digital image fundamentals. Elements of visual perception, Simple image model, Sampling and quantization, Basic relationships between pixels, neighbour of pixels, Connectivities, Relation, Equivalence and transitive clause, Distance measures, Arithmetic/logic operations	6	Hrs
Unit II	Imaging Geometry: basic transformations, perspective transformations, Camera models; Photographic films- Film structure and exposure, film Characteristics diaphragm and shutter setting. Introduction to Fourier Transform, the discrete Fourier Transform, some properties of two dimensional Fourier Transform, separability, translation periodicity and conjugate symmetry, rotation, distributivity, and scaling, average value, Laplacian, convolution, and Correlation sampling, Fast Fourier Transforms, FFT algorithm, Inverse FFT , Implementation	8	Hrs
Unit III	Image enhancement: Spatial domain methods, Frequency domain method, Enhancement by point processing, Simple intensity transforms, Histogram processing, Image subtraction, Image averaging, Spatial filtering, Smoothing filters Image restoration : Degradation model, Degradation model for continuous Functions, algebra approach to restoration, Un-constrained restoration, constrained restoration, Removal of blur caused by uniform linear motion, Blind image, Deconvolution, Some algorithms	10	Hrs
Unit IV	Image coding- Redundancy, Interpixel redundancy, Measuring information, Information channel, Fundamental coding theorem, Image Segmentation, Line detection, Edge detection, Thresholding, Region splitting and merging	8	Hrs
Unit V	Image compression, Image compression models: The source encoder and decoder, Channel encoder and decoder, Error free compression, Variable length coding, Lossless predictive coding, Lossy compression: Lossy predictive coding, Transformed coding, Synthesis and analysis of image, Recognition, interpretation	10	Hrs
Text/References:			
	1. Digital Image Processing (3rd Edition) by Rafael C. Gonzalez and Ric Woods	hard E.	
	 Digital Image Processing Using Java, Efford, AWL, NY, 2000. The Computer Image, A Watt and F.Policarpo AWL,NY, 1999 Fundamentals of Image Processing by A.K.Jain, PHI 		

EC 9040	SPEECH PROCESSING	3-0-0	3
Unit I	The Speech Production mechanism: Physiological and Mathematical Model.Relating the physiological and mathematical model. Categorization of	6	Hrs
	Speech Sounds based on the source-system and the articulatory model		
Unit II	Speech Signal Processing Concepts: Discrete time speech signals, relevant properties of the fast Fourier transform and Z-transform for speech recognition,	8	Hrs
	convolution, linear and non linear filter banks. Spectral estimation of speech		
	nediction (LP) analysis of speech Homomorphic speech signal de		
	convolution, real and complex cepstrum, application of cepstral analysis to		
	speech signals		
Unit III	The Speech Recognition Front End: Feature extraction for speech recognition,	10	Hrs
	Static and dynamic features for speech recognition, robustness issues,		
	discrimination in the feature space, feature selection. Mel frequency cepstral		
	co-efficients (MFCC), Linear prediction cepstral coefficients (LPCC),		
Unit IV	Distance measures for comparing speech patterns : Log spectral distance	8	Hrs
Chitty	cepstral distances, weighted cepstral distances, distances for linear and warped	0	1115
	scales. Dynamic Time Warping for Isolated Word Recognition		
Unit V	Statistical models for speech recognition: Vector quantization models and	10	Hrs
	applications in speaker recognition. Gaussian mixture modeling for speaker		
	and speech recognition. Discrete and Continuous Hidden Markov modeling for		
	hybriding a simple speech recognition system		
Text/References:	bunding a simple speech recognition system		
	1. Digital Processing of Speech Signals, LR Rabiner and RW Schafer,	Pearson	
	2 Discrete-Time Speech Signal Processing Principles and Practice The	omas F	
	Ouatieri, Cloth, 816 pp. ISBN: 013242942X Published: OCT 29, 2001.	////us 1.	
	3. Fundamentals of Speech Recognition, L. Rabiner and B. Juang, Prent	ice-Hall	
	SignalProcessing Series, Pages: 507, Year of Publication: 1993, ISBN:0-13-	015157-	
	2.		
	4. Speech and Audio Signal Processing: Processing and perception of sper	ech and	
	5 Corpus-Based Methods in Language and Speech Processing Steve Your	or et al	
	editors, 234 pages, Kluwer, ISBN 0-7923-4463-4.	ig ot. ui	
	6. Discrete Time Processing of Speech Signals, JR Deller, JG Proakis, JH	Hansen,	
	Year of Publication: 1993, ISBN:0023283017.		
	7. Hidden Markov Models for Speech Recognition, XD Huang, Y Ariki, M	A Jack,	
	Edinburgh University Press.		

EC 9041	MODERN CONTROL ENGG	3-0-0	3
Unit I	Discrete Time Systems: Introduction to discret time systems, the Z	6	Hrs
	transformation:, Solving differential equations by z-transformation methods,		
	the inverse z-transformation, Pulse transfer function, Theorems of the z-		
	transformation, zero order hold, response between sampling instants		
Unit II	Stability Analysis: Introduction, Relation between s-plane z-plane, Stability analysis using JHRY criterion, Stability analysis using bilinear transformation	8	Hrs
Unit III	Time domain analysis of S.D. System: Introduction. Time response of S.D.	10	Hrs
	System, Root Loci for digital control systems. Steady state effort analysis of	- •	
	S D Systems Frequency domain analysis of S D Systems the loci for digital		
	control systems		
Unit IV	The Bode Diagram C M and P.M. State Space analysis of control systems:	8	Hrs
Unit I v	Introduction state space corresonation of continuous and discrete time	0	1115
	sustance Solutions of time inversion and time version state equation. State		
	systems, Solutions of time invariant and time varying state equation. State		
T T T T T T	transition metric; Relation between state equation and transfer function	10	
Unit V	Characteristic equation, Eigen values and Eigen vectors. State model form	10	Hrs
	T.F., Controllability: Introduction, Definitions, Theorems on controllability,		
	Observability: Introduction, Definition, Theorems on observability, Control		
	system design: Design of digital control systems with deadbeat response, pole		
	placement design by state feedback, state observer, Design of full and reduced		
	order observer. Introduction to nonlinear control systems: describing function		
	techniques, Phase plane techniques		
Text/References:			
	1. Digital Control System, Kuo, International Edition, Saunders College		
	Publishing, New York.		
	2 Digital Control System Analysis and Design Philips and H T Nagle PHI		

Digital Control System Analysis and Design, Philips and H T Nagle, PHI
 Digital Control of Dynamic Systems, Franklin, Addision Wesley, Tokyo

EC 9042	BIOMEDICAL SIGNAL PROCESSING	3-0-0	3
Unit I	Introduction: General measurement and diagnostic system, classification of signals, introduction to biomedical signals, Biomedical signal acquisition and processing, Difficulties in signal acquisition. ECG: ECG signal origin, ECG parameters-QRS detection different techniques, ST segment analysis, Arrhythmia, Arrhythmia analysis, Arrhythmia monitoring system	6	Hrs
Unit II	ECG Data Reduction: Direct data compression Techniques: Turning Point, AZTEC, Cortes, FAN, Transformation Compression Techniques: Karhunen - Loeve Transform, Other data compression Techniques: DPCM, Huffman coding, Data compression Techniques comparison. Signal averaging: Basics of signal averaging, Signal averaging as a digital filter, A typical averager, Software and limitations of signal averaging	8	Hrs
Unit III	Frequency Domain Analysis: Introduction, Spectral analysis, linear filtering, cepstral analysis and homomorphic filtering. Removal of high frequency noise (power line interference), motion artifacts (low frequency) and power line interference in ECG, Time Series Analysis: Introduction, AR models, Estimation of AR parameters by method of least squares and Durbin's algorithm, ARMA models. Spectral modeling and analysis of PCG signals	10	Hrs
Unit IV	Spectral Estimation: Introduction, Blackman- tukey method, The periodogram, Pisarenko's Harmonic decomposition, Prony' method, Evaluation of prosthetic heart valves using PSD techniques. Comparison of the PSD estimation methods. Event Detection and waveform analysis: Need for event detection, Detection of events & waves, Correlation analysis of EEG signals, The matched filter, Detection of the P wave, Identification of heart sounds, Morphological analysis of ECG waves, analysis of activity	8	Hrs
Unit V	Adaptive Filtering: Introduction, General structure of adaptive filters, LMS adaptive filter, adaptive noise cancellation, Cancellation of 60 Hz interference in ECG, cancellation of ECG from EMG signal, Cancellation of maternal ECG in fetal ECG. EEG: EEG signal characteristics, Sleep EEG classification and epilepsy	10	Hrs
Text/References:			
	 "Biomedical Signal Analysis" A case study approach, Rangaraj M Rangayya Wiley publications. "Biomedical Signal Processing Time and Frequency Domains Analysis (I)", Arnon Cohen, CRC press. "Biomedical Signal Processing Principles and Techniques" D.C.Reddy, T Graw-Hill "Biomedical Digital Signal Processing", Willis J. Tompkins, PHI. 	an, John Volume Tata Mc	

EC 9043	EMBEDDED SYSTEM DESIGN	3-0-0	3
Unit I	Introduction to Microcontrollers and Microprocessors: Basic Architectures of	6	Hrs
	Microcontrollers, Processor Types and Memory Structures, Organization of		
	Data Memory; Instruction Set, Addressing Modes and Port Structure, External		
	Memory Access, Timers, Interrupts, Program Branching Instructions, and		
	Serial Communication		
Unit II	Introduction to Real Time Embedded Systems: Embedded Systems	8	Hrs
	Components, Memory, Digital Signal Processors, General Purpose Processors,		
	Embedded Processors and Memory-Interfacing		
Unit III	Embedded Systems I/O: Interfacing bus, Protocols, Timers, Interrupts,	10	Hrs
	DMA,USB and IrDA, AD and DA Converters, Analog Interfacing		
Unit IV	Design of Embedded Processors: Field Programmable Gate Arrays and	8	Hrs
	Applications, Introduction to Hardware Description Languages, Embedded		
	Communications: Serial, Parallel, Network, Wireless Communication		
Unit V	Embedded System Software and Software Engineering issues: Introduction to	10	Hrs
	Real-Time Systems, Real-Time Task Scheduling, Concepts in Real-Time		
	Operating Systems, Commercial Real-Time Operating Systems, Introduction to		
	Software Engineering, Requirements Analysis and Specification, Modeling		
	Timing Constraints, Software Design		
Text/References:			
	1. David E Simon, " An embedded software primer ", Pearson education Asia, 2	2001.	
	2. John B Peat man " Design with Microcontroller ", Pearson education Asia, 19	998.	
	3. Jonartthan W. Valvano Brooks/cole " Embedded Micro computer System	ns. Real	
	time Interfacing ", Thomson learning 2001.		
	4. Burns, Alan and Wellings, Andy, " Real-Time Systems and Progr	amming	
	Languages ", Second Edition. Harlow: Addison-Wesley-Longman, 1997.		
	5. Raymond J.A. Bhur and Donald L.Bialey, " An Introduction to real time s	systems:	
	Design to networking with $C/C++$ ", Prentice Hall Inc. New Jersey, 1999.		
	$C = C_{\text{max}} + M_{\text{max}} +$.1	

Grehan Moore, and Cyliax, "Real time Programming: A guide to 32 Bit Embedded Development. Reading "Addison-Wesley-Longman, 1998. Heath, Steve, "Embedded Systems Design ", Newnes 1997. 6.

7.

EC 9044 Unit I	BIO-SENSORS AND BIO MEMS Approaches to designing electronic systems Sensor classification & sensing principles Introduction to biosensors & bioMS	3-0-0 8	3 Hrs
Unit II	Semiconductor sensors for physical measurands Physicochemical sensors integrable on silicon.	10	Hrs
Unit III	Biosensors: Structures & device analysis Catalytic biosensors Affinity biosensors	14	Hrs
Unit IV	BioMS: Architectures & analytic models	10	Hrs
Text/References:			
	 SM Sze John Wiley, Semiconductor Devices: Physics & Technology` by, 2002. RS Muller, RT Howe, SD Senturia, RL Smith and RM White, `Microse IEEE Press, New York, 1991. Mohamed Gad-el-Hak (R), MEMS handbook` CRC Press, Boca Raton, 2002 Anthony P.F.Turner, Isao Karube and George S. Wilson, `Bios :fundamentals and applications`, Oxford University Press, Oxford, 1987. S Middelhoek & SA Audet , `Silicon sensors`, Academic Limited London 1989 	, India, ensors`, 2. sensors Press	
	 A Sandana. `Engineering biosensors: kinetics and design applications`, Aca Press, San Diego, 2002. 	ademic	

7. D Voet & JG Voet, 'Biochemistry', J Wiley & Sons, New York, 1990.

EC-9045 MODERN DIGITAL COMMUNICATION TECHNIOUES 3-0-0 3 Hrs Unit I Analog-to-Digital Conversion: Sampling theorem, Pulse-Amplitude 8 Modulation, Channel bandwidth for PAM signal, Natural sampling, Flat top sampling, Quantization of signals, Quantization error, Pulse-code modulation (PCM), Electrical representation of binary digits, The PCM system, Companding, Multiplexing PCM signals, Differential PCM, Delta modulation, Adaptive delta modulation, Vocoders, Channel Vocoder, Linear Predictive coder. Digital Modulation Techniques: Binary Phase-Shift Keying (BPSK), Unit II 12 Hrs Differential Phase-Shift Keying, Differentially-Encoded PSK (DEPSK), Quadrature Phase-Shift Keying (QPSK), Quadrature Amplitude Shift Keying (QASK), Binary Frequency-Shift Keying (BFSK), Similarity of BPSK and BFSK, M-ary FSK, Minimum Shift Keying (MSK). Unit III Data Transmission: A base band signal receiver, Probability of error, The 12 Hrs Optimum Filter, Matched Filter, Probability of error in Matched filter, Coherent reception, Coherent reception of PSK and FSK, Non-Coherent reception of FSK, PSK and QPSK, Calculation of error probability of BPSK and BFSK, Error probability for QPSK] Bit-by-bit encoding versus Symbolby-Symbol encoding, Relationship between Bit error rate and Symbol Error rate and comparison of modulation systems. Unit IV Information Theory and Coding: Discrete messages, The concept of amount of 10 Hrs information, Entropy, Information rate, Coding to increase average information per bit, Shannon's theorem, Capacity of a Gaussian channel,

Bandwidth-S/N tradeoff, use of orthogonal signals to attain Shannon's limit, Efficiency of orthogonal signal transmission, Coding: Parity check bit coding for error detection, Coding for error detection and error correction, Block codes (coding and decoding), Convolution codes (coding and decoding), Comparison of error rates in coded and uncoded transmission.

Text/References:

- 1. Wayne Tomasi, "Electronic communications systems" 5th edition Pearson Educaion Asia, 2006
- 2. Taub and Schilling, "Principles of Communication Systems", TMH, IInd Edition, 2006
 - 3. S. Haykin, "Digital Communication", Wiley, 2006.
 - 4. S. Haykin, "Analog and Digital Communication", Wiley.

EC-9046	SEMICONDUCTOR DEVICE MODELLING	3-0-0	3
Unit I	Concentration and motion of carriers in Semiconductor bulk Equilibrium	7	Hrs
	concentration in intrinsic and extrinsic semiconductors, Excess carriers, Drift		
	and Diffusion transport, continuity equation. Concentration and motion of		
	carriers at the interfaceSurface recombination, surface mobility etc		
Unit II	Device ModelingBasic equations for device analysis, approximation to these	9	Hrs
	equations for deriving analytical expressions		
Unit III	PN Homojunctionideal static IV characteristics and deviations including	14	Hrs
	breakdown, ac small signal equivalent circuit, switching characteristics. MIS		
	Junction/capacitorideal CV characteristics and deviations due to interface		
	states/charges and work function differences, threshold voltage.		
Unit IV	BJTTransistor action, Static Characteristics, ac small signal equivalent circuit,	10	Hrs
	switching characteristics. FETsField effect, types of transistors (JFET,		
	MESFET, MISFET, MOSFET), Static characteristics of MISFET and		
	MOSFET, small signal equivalent circuit, difference between BJT and FETS.		
Text/Refer	rences:		
1. Phy	vsics of Semiconductor Devices, Simon M. Sze and Kwok K. Ng,2006		
2. E.S	. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.		

- 3. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi,
- 4. Semiconductor Device Modeling, Giuseppe Massobrio and Paolo Antognetti

EC-9047	WIRELESS COMMUNICATION	3-0-0	3
Unit I	Introduction to Wireless Communication Systems – evolution of mobile radio communications, mobile radio systems around the world, radio communication	10	Hrs
	systems - paging systems, cordless telephone systems, cellular telephone		
	systems; comparison of common wireless communications, trends in cellular radio and personal communication, second generation (2G) cellular networks.		
	third generation (3G) wireless networks, Introduction to 4G, introduction to		
	radio wave propagation, free space propagation model.		
Unit II	Basics of mobile communication – Limitations of conventional mobile system, mobile cellular communication – introduction, concept of frequency reuse,	10	Hrs
	cluster size, cellular system architecture - mobile station, base station, MSC,		
	channel assignment strategies, call handover strategies, interference and		
	system capacity, improving capacity in central systems – cen spitting, sectoring, repeaters, microcell, zone concept.		
Unit III	Global system for mobile communication, GSM services and features, system	12	Hrs
	architecture, GSM radio subsystem, GSM channel types, location updating and		
	call setup, introduction to CDMA digital cellular standard, comparison between GSM and CDMA		
Unit IV	Wireless networking – wireless local area network standards, technology – RF	10	Hrs
	and IR wireless IT - LAN, diffuse, quasi-diffuse and point-to-point IR		
	wireless LAN, advantages and applications of Wireless LAN, introduction to		
T (D - f	wI-FI, Bluetooth		
	ences:	on Ed	ation
1. WII	eless communication principles and practice, 2nd Ed, Theodore S Rapaport, Pear	SOIL EUUC	auon.

- Wireless communication, 1st Edition, Andrea Goldsmith, Cambridge
 Fundamentals of Wireless Communication, 1st Edition by David Tse, Cambridge

EC-9048	CMOS MIXED SIGNAL CIRCUITS	3-0-0	3
Unit I	Analog and discrete-time signal processing, Analog integrated continuous-time	9	Hrs
	and discrete-time (switched-capacitor) filters		
Unit II	Basics of Digital to analog converters (DAC). DACs. Voltage, current, and	7	Hrs
	charge scaling DACs, Cyclic DAC, Pipeline DAC.		
Unit III	Basics of Analog to digital converters (ADC). Successive approximation	14	Hrs
	ADCs. Dual slope ADCs. High-speed ADCs (e.g. flash ADC, pipeline ADC		
	and related architectures). High-resolution ADCs (e.g. delta-sigma converters)		
Unit IV	Mixed-Signal layout. Interconnects. Phase locked loops, Delay locked loops	10	Hrs
	and their applications.		
Text/Refer	rences:		

- CMOS mixed-signal circuit design by R. Jacob Baker Wiley India, IEEE press, reprint 2008.
 CMOS circuit design, layout and simulation by R. Jacob Baker Revised second edition, IEEE press.
 Design of analog CMOS integrated circuits by Behad Razavi McGraw-Hill, 2003.

EC 9049 ENGINEERING RESEARCH METHODOLOGY

- Unit I Research Preparation and Planning: Objectives of research research and its goals. Critical thinking. Techniques for generating research topics. Topic selection and justification. Development of a research proposal – Theoretical and Experimental Processes.
- Unit II Research Resources: Sources of information. Literature search. World Wide Web, 10
 Online data bases search tools. Citation indices Principles underlying impact factor
 literature review Case studies, review articles and Meta-analysis record of research review Role of the librarian. Ethical and Moral Issues in Research, Plagiarism, tools to avoid plagiarism Intellectual Property Rights Copy right laws
 Patent rights.
- Unit III Academic Writing and Presentation: Proposal submission for funding agencies, Elements of Style. Organization of proposals, Basic knowledge of funding agencies, Research report writing, Communication skills, Tailoring the presentation to the target audience Oral presentations, Poster preparations, Submission of research articles for Publication to Reputed journals, Thesis writing, and Research report writing. Elements of excellent presentation: Preparation, Visual and Delivery. Oral Communication skills and Oral defense.
- Unit IV Data Collection, Analysis and Inference: Basic Statistical Distributions and their 12 applications Binomial, Poisson, Normal, Exponential, Weibull and Geometric Distributions. Sample size determination & sampling Techniques-Random sampling, stratified sampling, systematic sampling and cluster sampling. Large Sample Tests and Small Sample Tests-Student–t-test, F-test and χ 2 test and their applications in research studies. Correlation and Regression Analysis-Time series Analysis-Forecasting methods. Factor analysis, Cluster Analysis and Discriminant Analysis. Principles of Experimentation, Basic Experimental Designs: Completely Randomized Design Randomized Block Design and Latin Square Design. Factorial Designs: 22, 23 and 24 Accuracy, Precision and error analysis.
- Unit V Mathematical Modelling: Basic concepts of modeling of Engineering systems static 14 and dynamic model – Model for prediction and its limitations. System simulation -validation. Use of optimization techniques – Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization.

Text/References:

- 1. Research Methodology for Engineers, Ganesan R, MJP Publishers, Chennai.
- 2. Probability & Statistics for Engineers and Scientists, Walpole R.A., Myers R.H., Myers S.L. and Ye, King: Pearson Prentice Hall, Pearson Education.
- 3. Thesis and assignment writing, Anderson B.H., Dursaton, and Poole M., Wiley Eastern.
- 4. How to write and illustrate scientific papers?, Bijorn Gustavii, Cambridge University Press.
- 5. Research Design and Methods, Bordens K.S. and Abbott, B.b.: Mc Graw Hill.