Syllabus for Assistant Professor in Department of Agricultural Engineering

Farm Machinery

al te c

Machine Design: Design and selection of machine elements – gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, stress, torque, speed, displacement and acceleration on machine elements - shafts, couplings, keys, bearings and knuckle joints.

Farm Machinery: Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage, sowing, planting, fertilizer application, inter- cultivation, spraying, mowing, chaff cutting, harvesting and threshing calculation of performance parameters - field capacity, efficiency, application rate and losses; cost analysis of implements and tractors.

Farm Power

Sources of Power: Sources of power on the farm - human, animal, mechanical, electrical, wind, solar and biomass; bio-fuels.

Farm Power: Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems – fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses; performance index, cost analysis of implements and tractors.

Tractors and Power Tillers: Type, selection, maintenance and repair of tractors and power tillers; tractor clutches and brakes; power transmission systems – gear trains, differential, final drives and power take-off; mechanics of tractor chassis; traction theory; three point hitches - free link and restrained link operations; steering and hydraulic control systems used in tractors; tractor tests and performance; human engineering and safety considerations in design of tractor and agricultural implements.

Soil and Water Conservation Engineering

Fluid Mechanics: Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; continuity equation, kinematics and dynamics of flow; Bernoulli's theorem; laminar and turbulent flow in pipes, Darcy- Weisbach and Hazen-Williams equations, Moody's diagram; flow through orifices, weirs and notches; flow in open channels, dimensional analysis – concepts of geometric dimensionless numbers.

Soil Mechanics: Engineering properties of soils; fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr's circle of stress, active and passive earth pressures; stability of slopes, Terzaghi's one dimensional soil consolidation theory.

Hydrology: Hydrological cycle and measurement of its components; meteorological parameters and their measurement; analysis of precipitation data; runoff estimation; hydrograph analysis, unit hydrograph theory and application; streamflow measurement;

flood routing, hydrological reservoir and channel routing, Infiltration – indices and equations, drought and its classification.

Surveying and Leveling: Measurement of distance and area; instruments for surveying and levelling; chain surveying, methods of traversing; measurement of angles and bearings, plane table surveying; types of levelling; theodolite traversing; contouring; total station, introduction to GPS survey, computation of areas and volume.

Soil and Water Erosion: Mechanics of soil erosion - wind and water erosion: soil erosion types, factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion; terraces and bunds; vegetative waterways; gully control structures, drop, drop inletand chute spillways; earthen dams.

Watershed Management: Watershed characterization and land use capability classification; water budgeting in watershed, rainwater harvesting, check dams and farm ponds.

Irrigation and Drainage Engineering

j). |j|

Soil-Water-Plant Relationship: Water requirement of crops; consumptive use and evapotranspiration; measurement of infiltration, soil moisture and irrigation water infiltration.

Irrigation Water Conveyance and Application Methods: Design of irrigation channels and underground pipelines; irrigation scheduling; surface, sprinkler and micro irrigation methods, design and evaluation of irrigation methods; irrigation efficiencies.

Agricultural Drainage: Drainage coefficient; planning, design and layout of surface and sub-surface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality and reuse; non-conventional drainage system.

Groundwater Hydrology: Groundwater occurrence; Darcy's Law, steady and unsteady flow in confined and unconfined aquifers, groundwater exploration techniques; overview of groundwater recharge estimation and artificial recharge techniques.

Wells and Pumps: Types of wells, steady flow through wells; design and construction of water wells; classification of pumps; pump characteristics; pump selection and installation.

Agricultural Process Engineering

Engineering Properties of Agriculture Produce: Physical, thermal, frictional, rheological and electrical properties.

Evaporation and Drying: Concentration and drying of liquid foods – evaporators, tray, drum and spray dryers; hydrothermal treatments; drying and milling of cereals, pulses and oilseeds; drying kinetics; psychrometry – properties of air-water vapor mixture.

Size Reduction and Material Handling: Mechanics and energy requirement in size reduction of agriculture produce; particle size analysis for comminuted solids; size separation by screening; fluidization of granular solids-pneumatic, bucket, screw and belt conveying; cleaning and grading; effectiveness of separation; centrifugal separation of solids, liquids and gases; homogenization; filtration and membrane separation.

Processing of Agriculture Produce: Processing of seeds, spices, fruits and vegetables; value addition of agriculture produce.

Storage Systems: Controlled and modified atmosphere storage; perishable food storage, godowns, bins and grain silos, packaging material and machines.

Dairy and Food Engineering

Heat and Mass Transfer: Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations; material and energy balances in food processing systems; water activity, sorption and desorption isotherms.

Preservation of Food: Kinetics of microbial death – pasteurization and sterilization of milk and other liquid foods; preservation of food by cooling and freezing; refrigeration and cold storage basics and applications.

Syllabus for Assistant Professor in Department of Civil Engineering

Section 1: Structural Engineering

1 1

Engineering Mechanics: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system.

Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses.

Structural Analysis: Statically determinate and indeterminate structures by force/energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

Construction Materials and Management: Construction Materials: Structural Steel– Composition, material properties and behaviour; Concrete - Constituents, mix design, shortterm and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis-PERT and CPM; Cost estimation.

Concrete Structures: Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams.

Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam-columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis-beams and frames.

Section 2: Geotechnical Engineering

Soil Mechanics: Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one dimensional flow, Seepage through soils – two-dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; Onedimensional consolidation, time rate of consolidation; Shear Strength, Mohr's circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.

Foundation Engineering: Sub-surface investigations - Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop's method; Stress distribution in soils – Boussinesq's theory; Pressure bulbs, Shallow foundations – Terzaghi's and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations–dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

Section 3: Water Resources Engineering

Fluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag.

Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.

Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, ground water hydrology - steady state well hydraulics and aquifers; Application of Darcy's Law.

Irrigation: Types of irrigation systems and methods; Crop water requirements- Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

Section 4: Environmental Engineering

Water and Waste Water Quality and Treatment: Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment. Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.

Air Pollution: Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Section 5: Transportation Engineering

Transportation Infrastructure: Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments.

Geometric design of railway Track - Speed and Cant.

Concept of airport runway length, calculations and corrections; taxi way and exit taxi way design.

Highway Pavements: Highway materials - desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes.

Traffic Engineering: Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster's method; Types of intersections; Highway capacity.

Section 6: Geomatics Engineering

Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system;

Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves.

л р

Photogrammetry and Remote Sensing-Scale, flying height; Basics of remote sensing and GIS.

Syllabus for Assistant professor in Department of Electronics and Communication Engineering

Engineering Mathematics

n A

> Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, Eigen values and eigen vectors, rank, solution of linear equations- existence and uniqueness. Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.

> Differential Equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems.

Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stokes' theorems.

Complex Analysis: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, sequences, series, convergence tests, Taylor and Laurent series, residue theorem.

Probability and Statistics: Mean, median, mode, standard deviation, combinatorial probability, probability distributions, binomial distribution, Poisson distribution, exponential distribution, normal distribution, joint and conditional probability.

Networks, Signals and Systems

Circuit Analysis: Node and mesh analysis, superposition, Thevenin's theorem, Norton's theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of networkequations using Laplace transform.

Linear 2-port network parameters, wye-delta transformation.

Continuous-time Signals: Fourier series and Fourier transform, sampling theorem and applications.

Discrete-time Signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay.

Electronic Devices

Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.

Carrier Transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations. P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.

Analog Circuits

Diode Circuits: clipping, clamping and rectifiers.

BJT and MOSFET Amplifiers: biasing, ac coupling, small signal analysis, frequency response. Current mirrors and differential amplifiers.

Op-amp Circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt

triggers and oscillators.

Digital Circuits

50

Number Representations: binary, integer and floating-point- numbers. Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders.

Sequential Circuits: latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.

Data Converters: sample and hold circuits, ADCs and DACs. Semiconductor Memories: ROM, SRAM, DRAM.

Computer Organization: Machine instructions and addressing modes, ALU, data-path and control unit, instruction pipelining.

Control Systems

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag- lead compensation; State variable model and solution of state equation of LTI systems.

Communications

Random Processes: auto correlation and power spectral density, properties of white noise, filtering of random signals through LTI systems.

Analog Communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, super heterodyne receivers.

Information Theory: entropy, mutual information and channel capacity theorem.

Digital Communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR and BER.

Fundamentals of error correction, Hamming codes, CRC.

Electromagnetics

Maxwell's Equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.

Plane Waves and Properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.

Transmission Lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.

Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.

Syllabus for Assistant professor in Department of Mechanical Engineering

Fluid Mechanics: Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow, pumps & turbines, Cavitation.

Heat Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Applications: Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles.

Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychometric chart, basic psychometric processes.

Turbo machinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines.

Engineering Mechanics: Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange's equation. **Mechanics of Materials**: Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts;

theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength. Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope, crank effort diagram, gyroscopic action/stabilization, Engineering Drawing.

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine(CMM).

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing, Group technology, process planning.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.

Inventory Control: Deterministic models; safety stock inventory control systems. **Operations Research**: Linear programming, simplex method, transportation, assignment, networkflow models, simple queuing models, PERT, and CPM.

Syllabus for Assistant Professor in Department of Computer Science and Engineering

Engineering Mathematics

Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring.

Combinatorics: counting, recurrence relations, generating functions.

Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition.

Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.

Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation: Conditional probability and Bayes theorem.

Digital Logic

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Computer Organization and Architecture

Machine instructions and addressing modes. ALU, data path and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Programming and Data Structures

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Algorithms

Searching, sorting, hashing. Asymptotic worst-case time and space complexity. Algorithm design techniques: greedy, dynamic programming, and divide-and-conquer. Graph traversals, minimum spanning trees, shortest paths.

Theory of Computation

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and context-free languages, pumping lemma. Turing machines and undecidability.

Compiler Design

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimization, Data flow analyses: constant propagation, liveness analysis, common sub-expression elimination.

Operating System

System calls, processes, threads, inter process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems.

Databases

 $ER \square$ model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Anna

Computer Networks

Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

Syllabus for Assistant Professor in Department of Forestry

Forest and Forest Policy:

Forests-extent, basis for classification and distribution in India; Geographical distribution and salient features of major world forest types; Phylogeographical regions and vegetation of India; Role of Forest in national economy-productive, protective and ameliorative, tribal and rural livelihoods; Forest types of India: distribution and types; Succession, climax and retrogression; Concept of biomass, productivity, energy flow, and nutrient cycling in forest ecosystem; Migration and dispersal mechanism. National Forest policy 1984,1952,1988; Indian Forest Act, 1927; Forest Conservation Act, 1980 and Wild Life (Protection) Act, 1972 and its amendments; Biodiversity Act, 2002; The Scheduled Tribe and Other traditional forest dwellers (Recognition of Forest Rights) Act, 2006, National Agroforestry Policy, 2014.

Silviculture

Definition, object and scope of Silviculture; site factors-climate, edaphic, physiographic, biotic and their influence on forest vegetation; Forest regeneration; Silvicultural systemshigh forest and coppice systems; seed collection, processing, storage, viability and pretreatment; Seed dormancy and methods for breaking dormancy; Seed tenting and germination tests; Seed certification and ISTA Rules; Forest nursery-need, selection and preparation of site, layout and design of nursery beds; Types of Containers; Root trainers, Growing media and sowing methods; management of nursery-shading, watering, manuring, fertilizer application, weed control, insect pest and disease control; Planting techniques: site selection, evaluation and protection; Soil working techniques for various edaphic and climatic conditions; Planting patterns; Plant spacing; Choice of species. Afforestation on difficult sites: saline-alkaline soils, coastal stands, lateritic soils, wetlands, rains and sand dunes, dry and rocky areas, cold desert; Tending operation-weeding, cleaning, climber cutting, thinning-mechanical, ordinary, crown and selection thinning, improvement felling, pruning and girdling; Silviculture of important tree species- Populus, Eucalyptus, Dalbergia, Acacia, Tectona, Shorea, Prosopis, Casuarina, Pinus, Gmelina, Azadirachta, Diospyros, Pterocarpus, Anogeissus, Santalum, Quercus and Albizia, Bamboos, Ailanthus excels. Plantation forestry-industrial and energy plantations.

Forest Biology, Genetics and Tree improvement

Tree improvement: nature and extent of variations in natural population; Natural selection; Concept of seed source/ provenance; Selection of superior tree; Seed production areas, exotic trees, land races; Collection, evaluation and maintenance of germplasm; Provenance testing. Genetic grains, Treed breeding: general principles, mode of pollination and floral structure; Basics of forest genetics-inheritance, hardy Weinberg law, genetic drift; Aims and methods of tree breeding. Seed orchard; types, establishment, planning and management, progeny test and designs; Clonal forestry-merits and demerits; Techniques of vegetative propagation, tissue culture; Role of growth substances in vegetative propagation.

Forest Mensuration

Forest mensuration-definition, object and scope, Measurement of diameter, girth, height,

stem form, bark thickness, crown width and crown length; Measurement methods and their principles. Measurement and computation of volume of logs and felled /standing trees; Construction and application of volume tables; Biomass measurement; Growth and increment; Measurement of crops; Forest inventory: kinds of enumeration, sampling methods, sample plots and aerial photo interpretation;

Social forestry and Agroforestry

Social forestry, community forestry and farm forestry; Concept and definition of agroforestry, benefits and constraints of agroforestry; Historical development of agroforestry and overview of global agroforestry systems. Classification of agroforestry systems; Diagnosis and design of agroforestry system; Land capability classification and land use; Criteria of an ideal agroforestry design, productivity, sustainability and adoptability; Multipurpose tree species and their characteristics suitable for agroforestry. Plant management in agroforestry system; Productivity, nutrient cycling and light, water and nutrient competition in agroforestry; Concept of allelopathy and its impact on agroforestry; Agroforestry practices and systems in different agro-ecological zones of India; Economic evaluation of agroforestry systems: cost benefit analysis and land equivalent ratio.

Wood Science and Forest Products

Logging and ergonomics-wood anatomy, wood seasoning and preservation techniques; Forest products and utilization-manufacturing and utilization of wood products (timber and composite wood) and non-wood forest products such as fibres, flosses, dyes, gums, resins and tannins, medicinal plants, essential oils, edible fruits, spice, bamboo and canes.

Wildlife conservation, forest protection, Rangeland management and Ecotourism

Wildlife biology, ornithology, herpetology, wildlife management-population estimation in wildlife-census methods, Man-animal conflicts and management strategies; Protected areas; Concept of conservation of wildlife, In-situ and Ex-situ conservation techniques; Conservation of threatened wildlife species-mammals, birds, reptiles, amphibians and invertebrates (butterflies); Wildlife habitats; Forest protection: Forest fire, Causes, types, impact and control methods; Livestock grazing and its management; Major forest pests, diseases and weeds and its management; Rangeland management: definition, value of rangeland; types of rangelands, Global distribution of rangeland, Rangeland classification, factors affecting the rangeland; Grassland types of India; Grassland cover and status of India; Rangeland management : methods, types of enclosures, tools of rangeland management; National forest policy on grazing, grazing rights and concession in different states of India; Ecotourism: definition and classification, limitations and problems; Mass tourism versus ecotourism and its role in wildlife and forest conservation; World Tourism Organization; Ecotourism in Protected areas- planning and development.

Forest management

Forest management: definition and scope; Concept of sustained yield and normal forest; Rotation; Estimation of growing stock, density and site quality; management of even aged and uneven aged forest; Regulation of yield in regular and irregular forests by area, volume,

increment and number of trees; land equivalent ratio; Working plan; Joint Forest management; Conservation of natural resources; Forest evaluation; Internal rate of return, present net worth and cost benefit analysis. Ecosystem services. Role of green revolution in forest conservation in India: In-situ and ex-situ conservation of forest genetic resources-sacred groves; Urban forestry-choice of species, design and development and management.

Forest Systematics and ethnobotany

Principles of systematics (taxonomy), System of classification, Concept of species and genera; Modern trends in taxonomy, Biosystematics and numerical taxonomy; Phenetic, Cladistic, Omega and Alpha taxonomy; Concept of characters; Botanical keys, their use and construction; Principles of plant nomenclature; Concept of ICBN (Melbourne Code 2011); Typification; Principle of priority; Naming a new taxon; BSI, Herbaria of India and abroad; Concept of Role of taxonomy in management and conservation of forest. Characterization and economic importance of selection order and families of Dicots and monocots: Ranales (Malvaceae & Sterculiaceae), Guttiferales (Clusiaceae & Dipterocarpaceae), Rosales (Rosaceae & Leguminosae), Orchidales (Orchidaceae), Palmales (Arecaceae), Poales Ethnobotany: scope, object; methodology of ethnobiology; Ethnobotany in relation to health care and drug discovery; Importance and prospects of ethnobotany studies in northeast India.

Climate change and mitigation

Climate change: greenhouse effect, sources and sinks of greenhouse gases, major greenhouse gases, Global climate change-its history and future prediction; impact of climate change on forestry, wildlife and water resources, sea level, Livestock fishery and coastal ecosystems; International conventions on climate change; Global warming: effect of enhanced CO2 on productivity, Ozone layer depletion; Disaster management, floods, droughts, earthquakes, Tsunami, cyclone and landslides,

Forest Biotechnology

Forest biotechnology: definition, scope and introduction to nucleic acids-DNA and RNA, structural and functions, nucleoties and nucleosides; Molecular maps and markers, DNA barcodes, PCR, Cryopreservation; Introduction to bioinformatics; Mushroom cultivation; Tissue culture.

Forest Geo-informatics

Geographic information system and remote sensing- concept and scope in forestry, Types of remote sensing, Photogrammetry; Visual image interpretation; Digital image processing; Introduction to GPS: Principle, segments and factors affecting GPS; Spatial and non-spatial data; Raster and vector data conversion, Thematic classification; Fundamental of GIS, Data models and data structure; Satellite imagery, use and limitation. Introduction to GIS software: ArcGIS, ERDAS, IDRISI, ISROGIA, GIS and GPS application in natural resource management, land use and land cover mapping, EIA, Development of GIS data base for decision making purposes.

Statistics: definition, object and scope; frequency distribution; mean, median, mode and standard deviation, introduction to correlation and regression; Experimental designs: basic principles, completely randomized, randomized block, Latin square and split plot designs.

Syllabus for Assistant professor in Department of Physics

Mathematical Physics

Vector Calculus: linear vector space: basis, orthogonality and completeness; matrices; similarity transformations, diagonalization, eigenvalues and eigenvectors; linear differential equations: second order linear differential equations and solutions involving special functions; complex analysis: Cauchy-Riemann conditions, Cauchy's theorem, singularities, residue theorem and applications; Laplace transform, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensors.

Classical Mechanics

Lagrangian Formulation: D'Alembert's principle, Euler-Lagrange equation, Hamilton's principle, calculus of variations; symmetry and conservation laws; central force motion: Kepler problem and Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body dynamics: interia tensor, orthogonal transformations, Euler angles, Torque free motion of a symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical transformations: action-angle variables, Poisson brackets, Hamilton-Jacobi equation.

Special Theory of Relativity: Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Electromagnetic Theory

Solutions of electrostatic and magnetostatic problems including boundary value problems; method of images; separation of variables; dielectrics and conductors; magnetic materials; multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection and transmission at normal and oblique incidences; polarization of electromagnetic waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Quantum Mechanics

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac Bra-Ket notation, linear vectors and operators in Hilbert space; one dimensional potentials: step potential, finite rectangular well, tunnelling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular momentum and spin; addition of angular momenta; variational method and WKB approximation, time independent perturbation theory; elementary scattering theory, Born approximation; symmetries in quantum mechanical systems.

Thermodynamics and Statistical Physics

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Atomic and Molecular Physics

Spectra of one-and many-electron atoms; spin-orbit interaction: LS and jj couplings; fine and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transitions in diatomic molecules, Franck-Condon principle; Raman effect; EPR, NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.

Solid State Physics

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, intra- and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity; magnetic properties of solids; dia, para, ferro, antiferro and ferri-magnetism, domains and magnetic anisotropy; superconductivity: Type-I and Type II superconductors, Meissner effect, London equation, BCS Theory, flux quantization.

Electronics

Semiconductors in Equilibrium: electron and hole statistics in intrinsic and extrinsic semiconductors; metal-semiconductor junctions; Ohmic and rectifying contacts; PN diodes, bipolar junction transistors, field effect transistors; negative and positive feedback circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and sequential circuits, flip-flops, timers, counters, registers, A/D and D/A conversion.

Nuclear and Particle Physics

Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semi-empirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model; conservation laws, isospin symmetry, charge conjugation, parity and time-reversal invariance.

Syllabus for Assistant Professor in Department of Chemistry

(i) Inorganic Chemistry

- 1. Chemical periodicity
- 2. Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory).
- 3. Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents.
- 4. Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.
- 5. Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
- 6. Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.
- 7. Organometallic compounds: synthesis, bonding and structure, and reactivity. Organometallics in homogeneous catalysis.
- 8. Cages and metal clusters.

9. Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical methods.

10. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.

11. Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UVvis, NQR, MS, electron spectroscopy and microscopic techniques.

12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

(ii) Physical Chemistry:

1.Basic principles of quantum mechanics: Postulates; operator algebra; exactly- solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling.

2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.

3. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle.

4.Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π -electron systems.

5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.

6. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic resonance.

7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell's relations; spontaneity

and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.

8. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities – calculations for model systems.

9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance – Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations.

10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.

11. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.

12. Solid state: Crystal structures; Bragg's law and applications; band structure of solids.

13. Polymer chemistry: Molar masses; kinetics of polymerization.

14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.

(iii) Organic Chemistry

n D

- IUPAC nomenclature of organic molecules including regio- and stereoisomers.
 Principles of stereochamistra. Conf.
- 2. Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
- 3. Aromaticity: Benzenoid and non-benzenoid compounds generation and reactions.
- 4. Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes.
- 5. Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways.
- 6. Common named reactions and rearrangements applications in organic synthesis.
- 7. Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations.
- 8. Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
- Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction substrate, reagent and catalyst controlled reactions; determination of enantiomericand diastereomeric excess; enantio-discrimination. Resolution – optical and kinetic.
- 10. Pericyclic reactions electrocyclisation, cycloaddition, sigmatropic rearrangements

and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.

- 11. Synthesis and reactivity of common heterocyclic compounds containing one ortwo heteroatoms (O, N, S).
- 12. Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
- 13. Structure determination of organic compounds by IR, UV-Vis, ¹H & ¹³C NMR and Mass spectroscopic techniques.

Interdisciplinary topics

in and a second

- 1. Chemistry in nanoscience and technology.
- 2. Catalysis and green chemistry.
- 3. Medicinal chemistry.
- 4. Supramolecular chemistry.
- 5. Environmental chemistry.

Syllabus for Assistant Professor in Department of Mathematics

UNIT – I: Analysis

10) 100

Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.

Sequences and series, convergence, limsup, liminf.

Bolzano Weierstrass theorem, Heine Borel theorem.

Continuity, uniform continuity, differentiability, mean value theorem.

Sequences and series of functions, uniform convergence.

Riemann sums and Riemann integral, Improper Integrals.

Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.

Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems.

Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functionsas examples.

Linear Algebra

Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.

Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem.

Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms.

Inner product spaces, orthonormal basis.

Quadratic forms, reduction and classification of quadratic forms

UNIT – II: Complex Analysis

Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions.

Analytic functions, Cauchy-Riemann equations.

Contour integral, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem,

Maximum modulusprinciple, Schwarz lemma, Open mapping theorem.

Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations.

Algebra

Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements.

Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler's Ø- function, primitive roots.

Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutationgroups, Cayley's theorem, class equations, Sylow theorems.

Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal idealdomain, Euclidean domain.

Polynomial rings and irreducibility criteria.

Fields, finite fields, field extensions, Galois Theory.

Topology

1

Basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness.

UNIT – III: Ordinary Differential Equations (ODEs)

Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs.

General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function.

Partial Differential Equations (PDEs)

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs. Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Numerical Analysis

Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-Kutta methods.

Calculus of Variations

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

Linear Integral Equations

Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.

Classical Mechanics

Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action, Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

UNIT – IV: Descriptive statistics, exploratory data analysis

Sample space, discrete probability, independent events, Bayes theorem. Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions. Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, CentralLimit theorems (i.i.d. case).

Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution, Poisson and birth-and-death processes.

Standard discrete and continuous univariate distributions. sampling distributions, standard errors and asymptotic distributions, distribution of order statistics and range.

Methods of estimation, properties of estimators, confidence intervals. Tests of hypotheses: most powerful and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests.

Simple nonparametric tests for one and two sample problems, rank correlation and test for independence.Elementary Bayesian inference.

Gauss-Markov models, estimability of parameters, best linear unbiased estimators, confidence intervals, tests for linear hypotheses. Analysis of variance and covariance. Fixed, random and mixed effects models. Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression.

Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation.

Simple random sampling, stratified sampling and systematic sampling. Probability proportional to sizesampling. Ratio and regression methods.

Completely randomized designs, randomized block designs and Latin-square designs. Connectedness and orthogonality of block designs, BIBD. 2K factorial experiments: confounding and construction.

Hazard function and failure rates, censoring and life testing, series and parallel systems.

Linear programming problem, simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C,M/M/C with limited waiting space, M/G/1.

NOTE: All candidates are expected to answer questions from Unit I. Candidates with specialization in mathematics have to answer additional questions from Unit II and III. Candidates with specialization in Statistics have to answer additional question from Unit IV.

Syllabus for Assistant Professor in Department of Humanities and Social Sciences

(i) Specialization: ENGLISH

a Star

Unit-I: Drama Unit -II: Poetry Unit -III: Fiction, short story Unit-IV: Non-Fictional Prose

NOTE: The first four units must also be tested through comprehension passages to assess critical reading, critical thinking and writing skills. These four units will cover all literatures in English.

Unit -V: Language: Basic concepts, theories and pedagogy. English in Use.

Unit –VI: English in India: history, evolution and futures

Unit -VII: Cultural Studies

Unit-VIII: Literary Criticism

Unit -IX: Literary Theory post World War II

Unit –X: Research Methods and Materials in English

Specialization: ECONOMICS (ii)

Micro Economics

- Theory of Consumer Behaviour
- Theory of Production and Costs
- Decision making under uncertainty Attitude towards Risk
- Game Theory Non Cooperative games
- Market Structures, competitive and non-competitive equilibria and their efficiency

properties

- Factor Pricing
- General Equilibrium Analysis
- Efficiency Criteria: Pareto-Optimality, Kaldor Hicks and Wealth Maximization
- Welfare Economics: Fundamental Theorems, Social Welfare Function

 Asymmetric Information: Adverse Selection and Moral Hazard Macro Economics

- National Income: Concepts and Measurement
- Determination of output and employment: Classical & Keynesian Approach
- Consumption Function Investment Function
- Multiplier and Accelerator
- Demand for Money

- Supply of Money
- IS LM Model Approach
- Inflation and Phillips Curve Analysis
- Business Cycles
- Monetary and Fiscal Policy
- Rational Expectation Hypothesis and its critique Statistics and Econometrics
- Probability Theory: Concepts of probability, Distributions, Moments, Central Limit theorem
- Descriptive Statistics Measures of Central tendency & dispersions, Correlation, Index Numbers
- Sampling methods & Sampling Distribution
- Statistical Inferences, Hypothesis testing
- Linear Regression Models and their properties BLUE
- Identification Problem
- Simultaneous Equation Models recursive and non-recursive
- Discrete choice models
- Time Series Analysis
 <u>Mathematical Economics</u>
- Sets, functions and continuity, sequence, series
- Differential Calculus and its Applications
- Linear Algebra Matrices, Vector Spaces
- Static Optimization Problems and their applications
- Input-Output Model, Linear Programming
- Difference and Differential equations with applications International Economics
- International Trade: Basic concepts and analytical tools
- Theories of International Trade
- International Trade under imperfect competition
- Balance of Payments: Composition, Equilibrium and Disequilibriumand Adjustment Mechanisms
- Exchange Rate: Concepts and Theories
- Foreign Exchange Market and Arbitrage
- Gains from Trade, Terms of Trade, Trade Multiplier
- Tariff and Non-Tariff barriers to trade; Dumping
- GATT, WTO and Regional Trade Blocks; Trade Policy Issues
- IMF & World Bank
 <u>Public Economics</u>
- Market Failure and Remedial Measures: Asymmetric Information, Public Goods,

Externality

- Regulation of Market Collusion and Consumers' Welfare
- Public Revenue: Tax & Non-Tax Revenue, Direct & Indirect Taxes, Progressive and non-Progressive Taxation, Incidence and Effects of Taxation
- Public expenditure
- Public Debt and its management
- Public Budget and Budget Multiplier
- Fiscal Policy and its implications

Money and Banking

- Components of Money Supply
- Central Bank
- Commercial Banking
- Instruments and Working of Monetary Policy
- Non-banking Financial Institutions
- Capital Market and its Regulation
 Growth and Development Economics
- Economic Growth and Economic Development
- Theories of Economic Development: Adam Smith, Ricardo, Marx, Schumpeter, Rostow, Balanced & Unbalanced growth, Big Pushapproach.
- Models of Economic Growth: Harrod-Domar, Solow, Robinson, Kaldor
- Technical progress Disembodied & embodied; endogenous growth
- Indicators of Economic Development: PQLI, HDI, SDGs
- Poverty and Inequalities Concepts and Measurement
- Social Sector Development: Health, Education, Gender

(iii) Specialization: PSYCHOLOGY

Emergence of Psychology

Psychological thought in some major Eastern Systems: Bhagavad Gita, Buddhism, Sufism and Integral Yoga. Academic psychology in India: Pre- independence era; postindependence era; 1970s: The move to addressing social issues; 1980s: Indigenization; 1990s: Paradigmatic concerns, disciplinary identity crisis; 2000s: Emergence of Indian psychology in academia. Issues: The colonial encounter; Post colonialism and psychology; Lack of distinct disciplinary identity.

Western: Greek heritage, medieval period and modern period. Structuralism, Functionalism, Psychoanalytical, Gestalt, Behaviorism, Humanistic- Existential, Transpersonal, Cognitive revolution, Multiculturalism. Four founding paths of academic psychology - Wundt, Freud, James, Dilthey. Issues: Crisis in psychology due to strict adherence to experimental-analytical paradigm (logical empiricism). Indic influences on modern psychology.

Essential aspects of knowledge paradigms: Ontology, epistemology, and methodology.

Paradigms of Western Psychology: Positivism, Post-Positivism, Critical perspective, Social Constructionism, Existential Phenomenology, and Co-operative Enquiry. Paradigmatic Controversies. Significant Indian paradigms on psychological knowledge: Yoga, Bhagavad Gita, Buddhism, Sufism, and Integral Yoga. Science and spirituality (avidya and vidya). The primacy of self-knowledge in Indian psychology.

Research Methodology and Statistics

Research: Meaning, Purpose, and Dimensions.

Research problems, Variables and Operational Definitions, Hypothesis, Sampling.

Ethics in conducting and reporting research

Paradigms of research: Quantitative, Qualitative, Mixed methods approach Methods of research: Observation, Survey [Interview, Questionnaires], Experimental, Quasiexperimental, Field studies, Cross-Cultural Studies, Phenomenology, Grounded theory, Focus groups, Narratives, Case studies, Ethnography

Statistics in Psychology: Measures of Central Tendency and Dispersion. Normal Probability Curve. Parametric [t-test] and Non-parametric tests [Sign Test, Wilcoxon Signed rank test, Mann-Whitney test, Kruskal-Wallis test, Friedman]. Power analysis. Effect size.

Correlational Analysis: Correlation [Product Moment, Rank Order], Partial correlation, multiple correlation.

Special Correlation Methods: Biserial, Point biserial, tetrachoric, phicoefficient. Regression: Simple linear regression, Multiple regression.

Factor analysis: Assumptions, Methods, Rotation and Interpretation.

Experimental Designs: ANOVA [One-way, Factorial], Randomized Block Designs, Repeated Measures Design, Latin Square, Cohort studies, Time series, MANOVA, ANCOVA. Single-subject designs.

Psychological testing

Types of tests

Test construction: Item writing, item analysis

Test standardization: Reliability, validity and Norms

Areas of testing: Intelligence, creativity, neuropsychological tests, aptitude, Personality assessment, interest inventories

Attitude scales - Semantic differential, Staples, Likert scale.

Computer-based psychological testing

Applications of psychological testing in various settings: Clinical, Organizational and business, Education, Counseling, Military. Career guidance.

Biological basis of behavior

Sensory systems: General and specific sensations, receptors and processes

Neurons: Structure, functions, types, neural impulse, synaptic transmission. Neurotransmitters.

The Central and Peripheral Nervous Systems - Structure and functions. Neuroplasticity.

Methods of Physiological Psychology: Invasive methods - Anatomical methods, degeneration techniques, lesion techniques, chemical methods, microelectrode studies. Non-invasive methods – EEG, Scanning methods.

Muscular and Glandular system: Types and functions Biological basis of Motivation: Hunger, Thirst, Sleep and Sex.

Biological basis of emotion: The Limbic system, Hormonal regulation of behavior. Genetics and behavior: Chromosomal anomalies; Nature-Nurture Controversy [Twin studies and adoption studies]

Attention, Perception, Learning, Memory and Forgetting

Attention: Forms of attention, Models of attentionPerception:

Approaches to the Study of Perception: Gestalt and physiological approaches Perceptual Organization: Gestalt, Figure and Ground, Law of Organization Perceptual Constancy: Size, Shape, and Color; Illusions

Perception of Form, Depth and Movement Role of

motivation and learning in perception

Signal detection theory: Assumptions and applications

Subliminal perception and related factors, information processing approach to perception, culture and perception, perceptual styles, Pattern recognition, Ecological perspective on perception.

Learning Process:

R)

Fundamental theories: Thorndike, Guthrie, Hull

Classical Conditioning: Procedure, phenomena and related issues Instrumental learning: Phenomena, Paradigms and theoretical issues; Reinforcement: Basic variables and schedules; Behaviour modification and the applications

Cognitive approaches in learning: Latent learning, observational learning. Verbal learning and Discrimination learning

Recent trends in learning: Neurophysiology of learning

Memory and Forgetting

Memory processes: Encoding, Storage, Retrieval

Stages of memory: Sensory memory, Short-term memory (Working memory), Long-term Memory (Declarative – Episodic and Semantic; Procedural)

Theories of Forgetting: Interference, Retrieval Failure, Decay, Motivatedforgetting

Thinking, Intelligence and Creativity

Theoretical perspectives on thought processes: Associationism, Gestalt, Information processing, Feature integration model

Concept formation: Rules, Types, and Strategies; Role of concepts in thinking Types of Reasoning

Language and thought

Problem solving: Type, Strategies, and ObstaclesDecision-

making: Types and models

Metacognition: Metacognitive knowledge and Metacognitive regulation

Intelligence: Spearman; Thurstone; Jensen; Cattell; Gardner; Stenberg; Goleman; Das, Kar & Parrila

Creativity: Torrance, Getzels & Jackson, Guilford, Wallach & Kogan Relationship between Intelligence and Creativity

Personality, Motivation, emotion, stress and coping

Determinants of personality: Biological and socio-cultural

Approaches to the study of personality: Psychoanalytical, Neo-Freudian, Social learning, Trait and Type, Cognitive, Humanistic, Existential, Transpersonal psychology.

Other theories: Rotter's Locus of Control, Seligman's Explanatory styles, Kohlberg's theory of Moral development.

29

Basic motivational concepts: Instincts, Needs, Drives, Arousal, Incentives, Motivational

Approaches to the study of motivation: Psychoanalytical, Ethological, S-R Cognitive, Humanistic

Exploratory behavior and curiosity

Zuckerman's Sensation seeking Achievement, Affiliation and Power

Motivational Competence

67

Self-regulationFlow

Emotions: Physiological correlates

Theories of emotions: James-Lange, Canon-Bard, Schachter and Singer, Lazarus, Lindsley.
